SCS ENGINEERS

February 12, 2021 SCS Project No. 16216088.00

Mr. Eric Clegg Municipal Solid Waste Permits Section Waste Permits Division (MC-126) Texas Commission on Environmental Quality 12100 Park 35 Circle, Bldg. F Austin, TX 78753

Re: Proposed City of Waco Landfill - McLennan and Limestone Counties, Texas Municipal Solid Waste - Permit Application No. 2400 New Permit Application – January 21, 2021 Notice of Deficiency Response Tracking No. 23201563 [25533209/25817489]; RN110471307/CN600131940

Dear Mr. Clegg:

On behalf of the City of Waco, SCS Engineers (SCS) has prepared the following response to the Texas Commission on Environmental Quality's (TCEQ's) January 21, 2021 New Permit Application, Notice-of-Deficiency (NOD) letter/email, related to a permit application for the proposed City of Waco Landfill, TCEQ Permit No. MSW-2400.

For ease of review, we have attached to this response letter your original comment table from your January 21, 2021 NOD letter/email with the response location and response statements provided in separate columns in the table. Additionally, attached to this response letter, we have included one original and two (2) unmarked copies, and one marked copy of all revised pages for use as replacement pages in the permit application. Where possible, we have identified proposed changes from the existing permit application in a redline/strike-out version (i.e., marked version). Additionally, we have included a revision date (February 2021) and revision number (Revision 2 or 3) on pages that have been revised as part of this NOD response. Furthermore, we have attached a signed Part 1 Form, and posted this response on the publically accessible internet website http://www.waco-texas.com/landfill-application-process.asp.

We trust that our responses will assist you in the completion of your technical review. If you have any questions or need additional information, please do not hesitate to contact Ryan Kuntz, P.E. at (817) 358-6117.

Sincerely,

ames

Jim Lawrence, P.G. Project Director **SCS Engineers** TBPE Registration No. F-3407

Attachments: as described herein

Ryan Kuntz, P.E. Vice President/Satellite Office Manager SCS Engineers

cc: Mr. Charles Dowdell, City of Waco Mr. Jeffrey Reed, Lloyd Gosselink Rochelle & Townsend, P.C. NOTICE-OF-DEFICIENCY RESPONSE TABLE

City of Waco Landfill, Permit Application No. MSW-2400 January 21, 2021 Notice-of-Deficiency Response Table

NOD ID	MRI ID	App. Part	Citation	1st NOD Type	NOD Description	Response Location	
T1	163	Part II	330.61(m)(2)	Incomplete	Revise to include the final jurisdictional determination and the results on the Section 404 permit application from the USACE and revise the application as necessary. The NOD response indicates that a final response letter or approval from the USACOE has not been received on the jurisdictional determination or the submitted Section 404 permit application (submitted 6/24/2019).	N/A	Consistent informatio response la received or Section 404 respectivel
Т8	380	Part III	330.337(b)(2)	Attachment 10	 Revise Attachment 10, Section 2.5.1, to clarify whether the typical underdrain design contained in Appendix 10D can be used directly to all cells/areas and, as applicable, revise Section 2.5.1 to specify that the underdrain for a specific area will be designed by a Texas licensed P.E. Revise Attachment 10, Section 2.5.1, to refer to Section 11.5 (Ballast Evaluation Report). To accommodate the above discussed revision (use of underdrain), revise Section 11.5 to reflect the main purpose of a BER, i.e., determining if/when the underdrain operation for a specific area is no longer necessary. 	Attachment 10, Section 2.5.1 and Section 11.5	These com
T12	494	Part III	330.63(e)(4)(G)	Attachment 4, Figure 4.13	Revise the existing grade level line to match top of boring B-36.	Attachment 4, Figures 4.9, Figure 4.13, and Table III- 4.5	After furth boring B-30 on the prev accessibilit correspond TCEQ on 1 show the in has been re 4.13 has al and Attach correct loc
T15	689	Part III	330.457(a)(3)	Attachment 9	Revise Attachment 9, Section 2.3.8.1, to clarify whether the newly specified gradient (0.05) is conservative for both sideslopes and topslopes; or, revise to specify proper gradients. Revise Attachment 12, Section 1.4.3.6 to briefly explain why only topslope was evaluated by HELP model; or, revise to include HELP evaluation of sideslope as well.	Attachment 6C, Section 2.3 and Drawing 6C.2; Attachment 8, Appendices 8A and 8B; Attachment 9, Section 2.3.8.1; and Attachment 12, Appendix 12A, Section 1.4.3.6.	sinci Attach correct loca Similar to t new HELP i condition. I the average input into t water flow topslope an from the to result of th transmissiv will be suit drainage le been revise at drainage 375 feet fro drainage sy the detail of revised to i

Response

with the prior responses requesting this on, at the time of preparing this NOD response, a final etter or approval from the USACOE has not been n the jurisdictional determination or the submitted 4 permit application (submitted 6/24/2019), ly.

ments have been addressed as requested.

her review of survey data and project correspondence, 6 had been moved from its original location shown viously submitted Figure 4.9 due to lack of ty during drilling, as documented in email dence to you sent 12/07/2018, and approved by 2/14/2018. As such, Figure 4.9 has been revised to nstalled location and B-36 and cross-section line D-D' eoriented to traverse through B-32. As such, Figure lso been revised with the B-32 stratigraphy depicted ament 4, Table III-4.5 has been revised with the ration (northing/easting) of B-36.

the analysis performed for the topslope condition, a model analysis was performed for the sideslope However, for the sideslope geocomposite analysis, e annual drainage collected from the topslope was the sideslope model, such that the conveyance of within the geocomposite is associated with the nd sideslope flow combined. (i.e., water collected opslope flows into the sideslope geocomposite). The his HELP model demonstrates that a geocomposite vity of 3.7×10^{-4} m²/s or higher at a gradient of 0.25 table on the sideslope up to a maximum sideslope ength of 375 feet. As such, the final cover design has ed to include daylighting the sideslope geocomposite e swales (new detail) located a maximum distance of om the crest of the sideslope and at each subsequent wale or landfill perimeter toe-of-slope. Additionally, depicting the toe of slope of the landfill has been include rock armoring where the geocomposite t the landfill perimeter.

City of Waco Landfill, Permit Application No. MSW-2400 January 21, 2021 Notice-of-Deficiency Response Table

NOD ID	MRI ID	App. Part	Citation	1st NOD Type	NOD Description	Response Location	
							Part III Narr has been re geocompos toe-of-slope drainage sw 6C.2 (referr Termination the landfill 6C.2.
							Attachment the addition cover sides toe-of-slope
							Attachment transmissiv for topslop Attachment specificatio sideslope g
							Section 1.4. revised to in performed

Response

rrative, Section 3.8.1 and Attachment 6C, Section 2.3 evised to include a discussion of daylighting the site in drainage swales and at the landfill perimeter be. The proposed daylighting of the geocomposite at wales is depicted on newly added Detail E on Drawing red to as Sideslope Swale - Geocomposite

on). The proposed rock armor at the toe-of-slope of l is depicted on revised Details C and D on Drawing

at 8, Appendices 8A and 8B were revised to include onal closure cost associated with daylighting the final slope geocomposite at drainage swales and landfill be.

at 9, Section 2.3.8.1 has been revised to state that vity requirements apply to gradients of 0.05 and 0.25 be and sideslopes, respectively. Additionally, at 9, Section 2.3.8.2 has been revised to include the ons for the drainage aggregate for daylighting the geocomposite.

4.3.6 of Attachment 12, Appendix 12 A has been include a discussion of the HELP model analysis for the sideslope geocomposite.

TCEQ PART 1 FORM FOR NEW PERMIT FOR A MSW FACILITY (TCEQ-0650)

Facility Name: City of Waco Landfill Permittee/Registrant Name: City of Waco MSW Authorization #:2400 Initial Submittal Date: 8/7/2018 Revision Date: 2/11/2021

Texas Commission on Environmental Quality

Part I Form for New Permit/Registration and Amendment Applications for an MSW Facility

1. Reason for Submittal	Reason for Submittal				
Initial Submittal	Notice of Deficier	ncy (NOD) Response			
2. Authorization Type					
🛛 Permit	Registration				
3. Application Type					
New	Major Amendme	nt			
	Major Amendme	nt (Limited Scope)			
4. Application Fees					
Pay by Check	Online Payment				
If paid online, e-Pay Confirma	ation Number: 582EAC	000311862			
5. Application URL					
Is the application submitted f	Is the application submitted for Type I Arid Exempt (AE) and/or Type IV AE facility?				
Yes 🛛 No	51 1				
If the answer is "No", provide where the application and all http://http://www.waco-t	the URL address of a p revisions to that applica exas.com/landfill-ap	oublicly accessible internet web site ation will be posted. plication-process.asp			
6. Application Publishing					
Party Responsible for Publishi	ng Notice:				
Applicant D	Agent in Service	🛛 Consultant			
Contact Name: Ryan R. Kur Director	ntz, P.E.	Title: Vice President /Project			

7.	Alternative Language Notice				
	Is an alternative language notice required for this application? (For determination refer to Alternative Language Checklist on the Public Notice Verification Form TCEQ-20244-Waste)				
	□ Yes				
8.	Public Place Location of Application				
	Name of the Public Place: Waco-McLennan County Central Library				
	Physical Address: 1717 Austin Avenue				
	City: Waco County: McLennan State: TX Zip Code: 76701				
	(Area code) Telephone Number: 254.750.5941				
9.	Consolidated Permit Processing				
	Is this submittal part of a consolidated permit processing request, in accordance with 30 TAC Chapter 33?				
	Yes Xo Not Applicable				
	If "Yes", state the other TCEQ program authorizations requested:				
10). Confidential Documents				
	Does the application contain confidential documents?				
	$\square Yes \qquad \square No$				
	If "Yes", cross-reference the confidential documents throughout the application and submit as a separate attachment in a binder clearly marked "CONFIDENTIAL."				

11. Permits and Construction Approvals				
Permit or Approval	Received	Pending	Not Applicable	
Hazardous Waste Management Program under the Texas Solid Waste Disposal Act			\square	
Underground Injection Control Program under the Texas Injection Well Act			\boxtimes	
National Pollutant Discharge Elimination System Program under the Clean Water Act and Waste Discharge Program under Texas Water Code, Chapter 26		\boxtimes		
Prevention of Significant Deterioration Program under the Federal Clean Air Act (FCAA). Nonattainment Program under the FCAA				
National Emission Standards for Hazardous Air Pollutants Preconstruction Approval under the FCAA			\boxtimes	
Ocean Dumping Permits under the Marine Protection Research and Sanctuaries Act				

Permit or Approval	Received	Pending	Not Applicable
Dredge or Fill Permits under the CWA			\square
Licenses under the Texas Radiation Control Act			\boxtimes
Other (describe)			

12. General Facility Information						
Facility Name: City of Waco Landfill	Facility Name: City of Waco Landfill					
Contact Name: Charles Dowdell	Title: Director of Solid					
Waste						
MSW Authorization No. (if available): 24	00					
Regulated Entity Reference No. (if issued)*: RN110471307					
Physical or Street Address (if available):	4730 T K Parkway					
City: Axtell County: McLennan & Lim	estone State: TX Zip Code: 76624					
(Area Code) Telephone Number: (254)	750-1601					
Latitude (Degrees, Minutes Seconds): N	31° 42' 05.31"					
Longitude (Degrees, Minutes Seconds):	N 96° 55' 52.07"					
Benchmark Elevation (above mean sea le	vel): ft.					
Provide a description of the location of th identifiable landmarks: approximately Parkway and State Highway 31 in Mc	e facility with respect to known or easily 0.4 mile south of the intersection of TK Lennan County					
Detail access routes from the nearest Uni approximately 0.4 mile south of the i Highway 31 in McLennan County	ted States or state highway to the facility: ntersection of TK Parkway and State					
*If this number has not been issued for the facility, submit it with this application. List the Facility as th	complete a TCEQ Core Data Form (TCEQ-10400) and e Regulated Entity.					
13. Facility Type(s)						
🛛 Туре I 🗌 Туре IV	🗌 Туре V					
Type I AE Type IV AE	Туре VI					

14. Activities Condu	icted at the Facility		
Storage	Processing	🛛 Disposal	

15. Facility Waste Management Unit(s)		
🛛 Landfill Unit(s)	Incinerator(s)	
Class 1 Landfill Unit(s)	Autoclave(s)	
Process Tank(s)	Refrigeration Unit(s)	
Storage Tank(s)	Mobile Processing Unit(s)	
Tipping Floor	Type VI Demonstration Unit	
Storage Area	Compost Pile(s) and/or Vessel(s)	
Container(s)	Other (Specify)	
Roll-off Boxes	Other (Specify)	
Surface Impoundment	Other (Specify)	

16. Description of Proposed Facility or Changes to Existing Facility

Provide a brief description of the proposed activities if application is for a new facility, or the proposed changes to an existing facility or permit conditions if the application is for an amendment.

Proposed Type I Municipal Solid Waste Landfill located on 502.5 acres of land in McLennan and Limestone Counties, designed in accordance with Title 30, Texas Administrative Code, Chapter 330. The primary purpose of this landfill is to serve as a replacement for the current City of Waco landfill (MSW Permit No. 948A). The landfill will provide disposal capacity for residences, businesses, and industries primarily in the communities of McLennan and Limestone Counties and other nearby counties. Includes submittal of Parts III and IV of the permit application, and responses to technical notice of deficiency letters dated 11/19/18, 2/14/19, 8/19/2020, 11/9/2020, and 1/21/2021.

17. Facility Contact Information

Site Operator (Permittee/Registrant) Name: City of V Customer Reference No. (if issued)*: CN600131940	Naco
Contact Name: Charles Dowdell Waste	Title: Director of Solid
Mailing Address: 501 Schroeder Drive City: Waco County: McLennan State: TX Zip Code: 7 (Area Code) Telephone Number: (254) 750-1601	6710
Email Address: charlesd@wacotx.gov TX Secretary of State (SOS) Filing Number:	
*If the Site Operator (Permittee/Registrant) does not have this number, co (TCEQ-10400) and submit it with this application. List the Site Operator (Pe	omplete a TCEQ Core Data Form ermittee/Registrant) as the

Customer.

	Operator Name ¹ : same as Permittee					
	Customer Reference No. (if issued)*:					
	Contact Name: Title:					
	Mailing Address:					
	City: County: State: Zip Code:					
	(Area Code) Telephone Number:					
	Email Address:					
	TX SOS Filing Number:					
	¹ If the Operator is the same as Site Operator/Permittee type "Same as "Site Operator (Permittee/Registrant) *If the Operator does not have this number, complete a TCEQ Core Data Form (TCEQ-10400) and submit it with this application. List the Operator as the customer.)".				
	Consultant Name (if applicable): SCS Engineers, TBPE Registration No. F-340	7				
	Texas Board of Professional Engineers Firm Registration Number:					
	Contact Name: Ryan R. Kuntz, P.E. Title: Vice Pres., Pr. Director					
	Mailing Address: 1901 Central Drive, Suite 550					
	City: Bedford County: Tarrant State: TX Zip Code: 76021					
	(Area Code) Telephone Number: 817.358.6117					
	E-Mail Address: rkuntz@scsengineers.com					
	Agent in Service Name (required only for out-of-state):					
	Mailing Address:					
	City: County: State: Zip Code:					
	(Area Code) Telephone Number:					
	E-Mail Address:					
18	8. Facility Supervisor's License					
	Select the Type of License that the Solid Waste Facility Supervisor, as defined in 30 TA Chapter 30, Occupational Licenses and Registrations, will obtain prior to commencing facility operations.	ſC				
	Class A Class B					
19	0. Ownership Status of the Facility					
	Corporation Limited Partnership Federal Government					
	□ Individual					
	Sole Proprietorship County Government Military					

General Partnership State Government

Does the Site Operator (Permittee/Registrant) own all the facility units and all the facility property?
XYes No
If "No", provide the information requested below for any additional ownership.
Owner Name:
Street or P.O. Box:
City: County: State: Zip Code:
(Area Code) Telephone Number:
Email Address (optional):
20. Other Governmental Entities Information
Texas Department of Transportation District: Waco
District Engineer's Name: Stanley Swiatek, P.E.
Street Address or P.O. Box: 100 S. Loop Drive
City: Waco County: McLennan State: TX Zip Code: 76704-2858
(Area Code) Telephone Number: (254) 867-2700
E-Mail Address (optional):
The Local Governmental Authority Responsible for Road Maintenance (if applicable): N.A.
Contact Person's Name:
Street Address or P.O. Box:
City: County: State: Zip Code:
(Area Code) Telephone Number:
E-Mail Address (optional):
City Mayor Information
City Mayor's Name: Kyle Deaver
Office Address: 300 Austin Ave
City: Waco County: McLennan State: TX Zip Code: 76702
(Area Code) Telephone Number: (254) 750-5750
E-Mail Address (optional): kyle.deaver@wcotx.gov
City Health Authority: Waco-McLennan County Public Health District
Contact Person's Name: Dr. Brenda Gray, Director
Street Address or P.O. Box: 225 W. Waco Drive
City: Waco County: McLennan State: TX Zip Code: 76707
(Area Code) Telephone Number: (254) 750-5450
E-Mail Address (optional):

County Judge Information

County Judge's Name: Scott M. Felton Street Address or P.O. Box: 501 Washington Ave, Room 214 City: Waco County: McLennan State: TX Zip Code: 76701 (Area Code) Telephone Number: (254) 757-5049 E-Mail Address (optional):

County Health Authority: Waco-McLennan County Public Health District Contact Person's Name: E. Farley Verner, M.D. Street Address or P.O. Box: 7030 New Sanger Road, Suite 202

City: Waco County: McLennan State: TX Zip Code: 76712

(Area Code) Telephone Number: (254) 855-9790

E-Mail Address (optional): farleyverner@gmail.com

State Representative Information

District Number: **12** State Representative's Name: **Kyle Kacal** District Office Address: **3000 Briarcrest Dr., Ste 203** City: **Bryan** County: **Brazos** State: **TX** Zip Code: **77802** (Area Code) Telephone Number: **979-774-7276** E-Mail Address (optional):

State Senator Information

District Number: 22 State Senator's Name: The Honorable Brian Birdwell District Office Address: 900 Austin Ave, Suite 500 City: Waco County: McLennan State: TX Zip Code: 76701 (Area Code) Telephone Number: (254) 772-6225 E-Mail Address (optional):

Council of Government (COG) Name: Heart of Texas COG Representative's Name: Falen Bohannon COG Representative's Title: Solid Waste Program Manager Street Address or P.O. Box: 1514 S. New Road City: Waco County: McLennan State: TX Zip Code: 76711 (Area Code) Telephone Number: (254)292-1800 E-Mail Address (optional): Falen.Bohannon@hot.cog.tx.us

County Judge Information

County Judge's Name: Limestone County Judge: Honorable Richard Duncan Street Address or P.O. Box: 200 W. State ST., Ste 101 City: Groesbeck County: Limestone State: TX Zip Code: 76642 (Area Code) Telephone Number: 254-729-3810 E-Mail Address (optional):

County Health Authority: Limestone Medical Center

Contact Person's Name: Dr. Jeffrey Rettig

Street Address or P.O. Box: 204 W. Trinity Street

City: Groesbeck County: Limestone State: TX Zip Code: 76642

(Area Code) Telephone Number: 254-729-3740

E-Mail Address (optional):

State Representative Information

District Number: **12** State Representative's Name: **Kyle Kacal** District Office Address: **3000 Briarcrest Dr., Ste 203** City: **Bryan** County: **Brazos** State: **TX** Zip Code: **77802** (Area Code) Telephone Number: **979-774-7276** E-Mail Address (optional):

State Senator Information

District Number: 5 State Senator's Name: Charles Schwertner District Office Address: 3000 Briarcrest Drive, Suite 202 City: Bryan County: Brazos State: TX Zip Code: 77802 (Area Code) Telephone Number: 979-776-0222 E-Mail Address (optional):

Council of Government (COG) Name: Heart of Texas COG Representative's Name: Falen Bohannon COG Representative's Title: Solid Waste Program Manager Street Address or P.O. Box: 1514 S. New Road City: Waco County: McLennan State: TX Zip Code: 76711 (Area Code) Telephone Number: (254)292-1800 E-Mail Address (optional): Falen.Bohannon@hot.cog.tx.us

River Basin Authority Name: Brazos River Authority					
Contact Person's Name: Phil Ford					
Watershed Sub-Basin Name:					
Street Address or P.O. Box: 4600 Cobbs Drive					
City: Waco County: McLennan State: TX Zip Code: 76710					
(Area Code) Telephone Number: (888) 922-6272					
E-Mail Address (optional):					
Coastal Management Program					
Is the facility within the Coastal Management Program boundary?					
🗌 Yes 🛛 No					
U.S. Army Corps of Engineers					
The facility is located in the following District of the U.S. Army Corps of Engineers:					
Albuquerque, NM Galveston, TX					
Ft. Worth, TX 🗌 Tulsa, OK					
Local Government Jurisdiction					
Within City Limits of:					
Within Extraterritorial Jurisdiction of:					
Is the facility located in an area in which the governing body of the municipality or county has prohibited the storage, processing or disposal of municipal or industrial solid waste?					
☐ Yes					
(If "Yes", provide a copy of the ordinance or order as an attachment):					

Signature Page

I, Bradley Ford

Signature:

(Site Operator (Permittee/Registrant)'s Authorized Signatory)

City Manager, (Title)

certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Date: :

TO BE COMPLETED BY THE OPERATOR IF THE APPLICATION IS SIGNED BY AN AUTHORIZED REPRESENTATIVE FOR THE OPERATOR

I. _, hereby designate (Print or Type Operator Name)

(Print or Type Representative Name)

as my representative and hereby authorize said representative to sign any application, submit additional information as may be requested by the Commission; and/or appear for me at any hearing or before the Texas Commission on Environmental Quality in conjunction with this request for a Texas Water Code or Texas Solid Waste Disposal Act permit. I further understand that I am responsible for the contents of this application, for oral statements given by my authorized representative in support of the application, and for compliance with the terms and conditions of any permit which might be issued based upon this application.

Printed or Typed Name of Operator or Principal Executive Officer

Signature

SUBSCRIBED AND SWORN to before me by the said Bradley Ford On this 12th day of February 2021 My commission expires on the 3/55 day of March. 2022

Notary Public in and for

Lennan _ County, Texas (Note: Application Must Bear Signature & Seal of Notary Public)

Part I Attachments

(See Instructions for P.E. seal requirements.)

Required Attachments	Attachment No.
Supplementary Technical Report	Х
Property Legal Description	Х
Property Metes and Bounds Description	Х
Facility Legal Description	Х
Facility Metes and Bounds Description	Х
Metes and Bounds Drawings	Х
On-Site Easements Drawing	Х
Land Ownership Map	Х
Land Ownership List	Х
Electronic List or Mailing Labels	Х
Texas Department of Transportation (TxDOT) County Map	Х
General Location Map	Х
General Topographic Map	Х
Verification of Legal Status	Х
Property Owner Affidavit	Х
Evidence of Competency	Х
Additional Attachments as Applicable- Select all those apply	and add as necessary
🛛 TCEQ Core Data Form(s)	Х
Signatory Authority Delegation	Х
🛛 Fee Payment Receipt	Х
Confidential Documents	
Waste Storage, Processing and Disposal Ordinances	
Final Plat Record of Property	
Certificate of Fact (Certificate of Incorporation)	
Assumed Name Certificate	

MARKED VERSION

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 4 GEOLOGY AND GROUNDWATER REPORT

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – May 2020 Revision 1 – October 2020 Revision 2 – December 2020 <u>Revision 3 – February 2021</u> SCS Project No. 16216088.00

TABLE OF CONTENTS

SEC1	ΓΙΟΝ	PAGE
1	INTRODUCTION	4-1-1
2	REGIONAL PHYSIOGRAPHY, TOPOGRAPHY, AND CLIMATE	4-2-1
	2.1 PHYSIOGRAPHY AND TOPOGRAPHY	4-2-1
	2.2 CLIMATE	4-2-1
3	GEOLOGY	4-3-1
	3.1 GEOLOGIC SETTING	4-3-1
4	HYDROGEOLOGY	4-4-1
	4.1 REGIONAL HYDROGEOLOGY	4-4-1
	4.2 LOCAL GROUNDWATER USE	4-4-1
5		4-5-1
	5.1 PREVIOUS INVESTIGATION PROGRAMS	4-5-1
	5.2 SITE STRATIGRAPHY	4-5-2
	5.3 SOIL ENGINEERING PROPERTIES	4-5-3
6	GROUNDWATER INVESTIGATION REPORT	4-6-1
	6.1 STANDPIPE PIEZOMETERS	4-6-1
	6.2 VIBRATING WIRE PIEZOMETERS	4-6-1
	6.3 GROUNDWATER INVESTIGATION RESULTS	4-6-2
7	POLLUTANT PATHWAYS	4-7-1
	7.1 LOCAL HYDROGEOLOGY	4-7-1
8	GROUNDWATER QUALITY CHARACTERIZATION	4-8-1
	8.1 OVERVIEW OF THE EXISTING GROUNDWATER MONITORING SYSTEM	4-8-1
	8.2 GROUNDWATER MONITORING DATA	4-8-1
	8.3 REGIONAL GROUNDWATER QUALITY	4-8-1
9	GROUNDWATER MONITORING PLAN	4-9-1
	9.1 EXISTING GROUNDWATER MONITORING SYSTEM	4-9-1
	9.2 PROPOSED GROUNDWATER MONITORING SYSTEM	4-9-1
	9.3 GROUNDWATER MONITORING SYSTEM CERTIFICATION	4-9-3
10	GROUNDWATER SAMPLING AND ANALYSIS REQUIREMENTS	4-10-1
11	SUMMARY	4-11-1
12	REFERENCES	4-12-1

Figures

- Figure 4.1 Site Location Map
- Figure 4.2 Physiographic Map of Texas
- Figure 4.3 General Topographic Map
- Figure 4.4 Geologic Map
- Figure 4.5 Structural Cross Sections of Regional Geology and the Trinity Aquifer
- Figure 4.6 Seismic Impact Zone Map
- Figure 4.7 Tectonic Map of Texas
- Figure 4.8 Trinity Aquifer
- Figure 4.9 Boring Location Map
- Figure 4.10 Geologic Cross Section A-A'
- Figure 4.11 Geologic Cross Section B-B'
- Figure 4.12 Geologic Cross Section C-C'
- Figure 4.13 Geologic Cross Section D-D'
- Figure 4.14 Geologic Cross Section E-E'
- Figure 4.15 Geologic Cross Section F-F'
- Figure 4.16 Piezometer Location Map
- Figure 4.17 VWP Location Map

- Figure 4.18 July 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.18A December 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.19 July 2020 Deep VWP Potentiometric Map
- Figure 4.19A December 2020 Deep VWP Potentiometric Map
- Figure 4.20 Proposed GWM System Map
- Figure 4.21 Typical Monitoring Well Detail

<u>Tables</u>

- Table III-4.1 Regional Physiography
- Table III-4.2 Waco Average Monthly Rainfall
- Table III-4.3 Geologic Units and their Water-Bearing Properties
- Table III-4.4 Recorded Wells within 1 Mile
- Table III-4.5 Coordinates and Elevations of Borings
- Table III-4.6 Properties of Unit I
- Table III-4.7 Properties of Unit II
- Table III-4.8 Properties of Unit III
- Table III-4.9 Existing Piezometer Completion Data
- Table III-4.10 Summary Initial and Static Water Level Data
- Table III-4.11 Vibrating Wire Piezometer Completion Data
- Table III-4.12 Vibrating Wire Piezometer Inferred Groundwater Elevation Data
- Table III-4.13 Summary of Aquifer (Slug) Tests Performed by SCS Engineers
- Table III-4.14 Summary of Horizontal Flow Rate Calculation Data
- Table III-4.15 Proposed Monitoring Well Information

Appendices

Appendix III-4.A	Soil Resource Report
Appendix III-4.B	Well Search Data
Appendix III-4.C	Soil Boring Plan

Appendix III-4.D **Boring Logs** Appendix III-4.E State Well Reports Appendix III-4.F Geotechnical Investigation Reports Appendix III-4.G Vibrating Wire Piezometer Manual and Calibration Forms Appendix III-4.H Standpipe Piezometer Completion Data Vibrating Wire Piezometer Completion Data Appendix III-4. Appendix III-4.J Precipitation and Groundwater Elevation Data Appendix III-4.K Standpipe Piezometer Historic Water Level Data Appendix III-4.L Vibrating Wire Piezometer Historic Water Level Data Appendix III-4.M Slug Test Data

FIGURES

- Figure 4.1 Site Location Map
- Figure 4.2 Physiographic Map of Texas
- Figure 4.3 General Topographic Map
- Figure 4.4 Geologic Map
- Figure 4.5 Structural Cross Sections of Regional Geology and the Trinity Aquifer
- Figure 4.6 Seismic Impact Zone Map
- Figure 4.7 Tectonic Map of Texas
- Figure 4.8 Trinity Aquifer
- Figure 4.9 Boring Location Map
- Figure 4.10 Geologic Cross Section A-A'
- Figure 4.11 Geologic Cross Section B-B'
- Figure 4.12 Geologic Cross Section C-C'
- Figure 4.13 Geologic Cross Section D-D'
- Figure 4.14 Geologic Cross Section E-E'
- Figure 4.15 Geologic Cross Section F-F'
- Figure 4.16 Piezometer Location Map
- Figure 4.17 VWP Location Map
- Figure 4.18 July 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.18A December 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.19 July 2020 Deep VWP Potentiometric Map
- Figure 4.19A December 2020 Deep VWP Potentiometric Map
- Figure 4.20 Proposed GWM System Map
- Figure 4.21 Typical Monitoring Well Detail

CITY OF WACO SOLID WASTE SERVICES

05/2020

4.9

IGURE:

EXISTING BORING LOCATIONS - I INDICATE SOIL BORINGS WHICH WERE DRILLED TO A DEPTH OF 5-FEET BELOW EDE (I.E., 500 FT MSL) AND EXISTING BORING LOCATIONS - II INDICATE SOIL BORINGS WHICH WERE DRILLED TO A DEPTH OF 30 FEET BELOW EDE (I.E., 475 FT MSL).

FOR PERMITTING PURPOSES ONLY

	SCS ENGINEERS CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS CONRAD AND SCHMIDT CONSULTING ENGINEERS EXPORED, 17 7622 (10 WACC) PROJECT TILE 201 (10 WACC) 202 (10 WACC) 201 (10
	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT SOURCE STEARNS, CONRAD AND SCHMIDT STEARNS, STEARNS, STEAR
CLIENT CITY OF WACO SOI ID WASTF SFRVICFS	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS 100 CENTRL DRIVE, SUITE SEQ, BEFORD, IX 76021 P1017) 577-2381 FX MO. (817) 771-2381 SOI ID WASTF SFRVICES
	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGRERS 1001 CENTRAL DRIVE, SUITE 550, BEDFORD, TX 76021 P001 CENTRAL, DRIVE, SUITE 550, BEDFORD, TX 76021 P001 CENTRAL, DRIVE, SUITE 550, BEDFORD, TX 76021

40 400

 \sim $\sim \sim$ \sim \sim \sim \sim

LEGEND:

	EXISTING GRADE (SEE NOTE 1)
<u> </u>	UNIT 1/UNIT 2 CONTACT WEATHERED/UNWEATHERED SHALE
	TRANSITIONAL CONTACT

1. EXISTING TOPOGRAPHY SHOWN ON THIS PLAN WAS DEVELOPED BY DAS GEOSPATIAL, FLOWN ON JULY 03, 2018.

2. SEE APPENDIX III-4.D FOR SUBSURFACE MATERIAL LEGEND.

FOR PERMITTING PURPOSES ONLY

TABLES

- Table III-4.1 Regional Physiography
- Table III-4.2 Waco Average Monthly Rainfall
- Table III-4.3 Geologic Units and their Water-Bearing Properties
- Table III-4.4 Recorded Wells within 1 Mile
- Table III-4.5 Coordinates and Elevations of Borings
- Table III-4.6 Properties of Unit I
- Table III-4.7 Properties of Unit II
- Table III-4.8 Properties of Unit III
- Table III-4.9 Existing Piezometer Completion Data
- Table III-4.10 Summary Initial and Static Water Level Data
- Table III-4.11 Vibrating Wire Piezometer Completion Data
- Table III-4.12 Vibrating Wire Piezometer Inferred Groundwater Elevation Data
- Table III-4.13 Summary of Aquifer (Slug) Tests Performed by SCS Engineers
- Table III-4.14 Summary of Horizontal Flow Rate Calculation Data
- Table III-4.15 Proposed Monitoring Well Information

Boring Number	Easting	Northing	Hollow Stem Auger Type	Ground Elevation (ft-msl)	Depth Drilled (ft-bgs)	Elevation of Bottom (ft-msl)
B-1	3353867.3	10599904.81	7 1⁄4	551.67	82.0	469.7
B-1 (PZ-1)	3353867.3	10599904.81	7 1⁄4	551.74	39.5	512.24
B-2	3354595.81	10598697.6	7 1⁄4	549.78	55.0	494.78
B-3	3355259.69	10597665.32	7 1⁄4	541.1	72.0	469.1
B-3 (PZ-3)	3355259.69	10597665.32	7 1⁄4	541.20	45.0	496.2
B-4	3355130.33	10599528	7 1⁄4	550.04	101.0	449.04
B-5	3355913.87	10600728.3	7 1⁄4	541.38	47.0	494.38
B-6	3355562.96	10602041.9	7 1⁄4	545.55	70.7	474.85
B-7	3356670.83	10599929.6	8 ¹ ⁄4	530.50	55.5	475
B-8 (PZ-8)	3357935.82	10599489.18	8 1/4	550.34	75.0	475.34
B-9 (PZ-9)	3355762.31	10599314.37	8 1/4	535.30	40.0	495.30
B-9 cont.	3355762.31	10599314.37	8 ¼	535.30	135.0	400.30
B-10	3356199.16	10602404.1	8 ¹ ⁄4	545.40	53.0	492.4
B-11	3357048	10602933.5	7 ¼	553.50	78.5	475
B-12	3355833.07	10601575	8 ¼	542.85	48.0	494.85
B-13	3357768.09	10600645.6	8 ¹ ⁄4	555.15	80.0	475.15
B-14	3356543.77	10602016.3	8 1/4	539.20	65.5	473.7
B-15	3357265.27	10602471.1	7 1⁄4	563.35	70.0	493.35
B-16	3354706.01	10599996.8	8 ¹ ⁄4	560.25	61.0	499.25
B-17	3355568.96	10600519.6	7 ¼	546.75	71.0	475.75
B-18 (PZ-18)	3356694.76	10601254.04	8 ¼	534.84	56.0	478.84
B-19	3357202	10601429	7 1⁄4	562.05	87.0	475.05
B-20 (PZ-20)	3357666.42	10601846.53	7 1⁄4	564.68	73.0	491.68
B-21	3357008	10600682	8 1⁄4	538.75	45.0	493.75
B-22	3358132.03	10601234	8 1⁄4	555.00	80.0	475
B-23	3355207.68	10598431	8 1⁄4	540.08	45.7	494.38
B-24	3355746.69	10598780.1	7 ¼	533.63	59.2	474.43
B-25	3356251.06	10599102.9	7 ¼	533.25	33.0	500.25
B-26	3356929.04	10599457.3	8 1⁄4	530.45	36.0	494.5
B-27	3358308.89	10600427.7	8 ¼	546.65	53.0	493.65
B-28	3356800.71	10598286.7	8 1⁄4	529.6	55.0	474.6
B-29	3358523.03	10599393	8 ¼	540.25	45.0	495.25
B-30	3357828.13	10598886.4	8 ¼	543.05	48.0	495.05
B-31	3355837.8	10599897	8 ¼	537.55	63.0	474.55
B-32	3357077.27	10597864.5	8 ¼	526.3	32.0	494.3
B-33 (PZ-33)	3357774.62	10598320.64	8 ¼	539.20	55.0	484.2
B-34	3358367.31	10598778.6	8 ¼	535.65	41.0	494.65
B-35	3357682.18	10600037.4	8 ¼	553.3	59.0	494.3
B-36	<u>3355915.26</u> 335 7239.12	<u>10598397.80</u> 10 596730.2	8 1/4	532.5	58.0	474.5
B-37	3358201.19	10597770.6	8 1/4	526.9	52.0	474.9
B-38	3358847.64	10598223.2	8 1/4	529.85	55.0	474.85
B-39	3358709.87	10597052.3	8 1/4	522.95	48.0	475
B-40	3359476.22	10597259.9	8 1/4	522.80	28.0	494.8
B-41 (PZ-41)	3359083.91	10599450.64	8 1/4	534.62	60.0	474.62
B-42	3358523.73	10597484.3	8 1/4	527.00	32.0	495.0
B-43 (PZ-43)	3358875.54	10600433.69	8 1/4	548.86	75.0	473.86

Table III-4.5 Coordinates and Elevations of Borings Advanced at the Site by SCS Engineers

 Revision 2-3
 T - 4 - 6
 SCS ENGINEERS

 Mt\Projects\Waco\16216088.00 New LF\T-140 Part III & IV App\Rev 3\Marked\Att 4\Att 4, Rev 3(marked).docx
 December 2020February 2021

Boring Number	Easting	Northing	Hollow Stem Auger Type	Ground Elevation (ft-msl)	Depth Drilled (ft-bgs)	Elevation of Bottom (ft-msl)
B-43 cont.	3358875.54	10600433.69	8 1⁄4	548.86	150	398.86
B-44	3354540.62	10599103.1	7 ¼	551.20	76.0	475.20
B-45	3356769.83	10601549.1	8 1⁄4	545.50	51.0	494.5
B-46	3357689.45	10601293.2	8 1/4	559.25	65.4	493.85
B-47 (PZ-47)	3356561.53	10598701.96	8 1⁄4	532.48	57.4	475.08

msl = mean sea level

b.g.s indicates depth is measured from below ground surface

nce James Lawrence Discipline License # 2-12-2021

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 6C GROUNDWATER PROTECTION PLAN

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, Texas 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – April 2020 Revision 1 – October 2020 <u>Revision 2 – February 2021</u> SCS Project No. 16216088.00

TABLE OF CONTENTS

Drawings

- 6C.1 Bottom Liner Details
- 6C.2 Final Cover Details

SCS Engineers TBPE Reg. # F-3407 • 6-inch-thick daily cover or 12-inch-thick intermediate cover.

Note, the sideslope geocomposite should be day-lighted a maximum distance of 375 feet from the crest of the sideslope and at each subsequent downslope drainage swale or at the landfill perimeter toe of slope, as shown on details provided on Drawing 6C.2. In cases where a drainage length of 375 feet occurs between drainage swales, the geocomposite should be day-lighted at the drainage swale immediately upslope of this location. Additionally, where the geocomposite is day-lighted, the final cover, including landfill toe of slope, will be protected with rock armor to prevent erosion resulting from stormwater seepage from the geocomposite drainage layer. Procedures for installation of the final cover system and closure of the landfill are described in Attachment 9 – Final Closure and Post-Closure Care Plan.

SCS ENGINEERS

DRAWINGS

- Drawing 6C.1 Bottom Liner Details
- Drawing 6C.2 Final Cover Details

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 8 CLOSURE AND POST-CLOSURE COST ESTIMATES

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, Texas 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

SECT	TION	PAGE
1	INTRODUCTION	8-1-1
2	CLOSURE COST ESTIMATE	8-2-1
3	POST-CLOSURE CARE COST ESTIMATE	8-3-1
4	COST ESTIMATE ADJUSTMENTS	8-4-1

Appendices

- Closure Cost Estimate Form for Municipal Solid Waste Type I Landfills 8A
- 8B **Closure Cost Estimate Calculations**
- Post-Closure Care Cost Estimate Form for Municipal Solid Waste Type I Landfills 8C
- 8D Post-Closure Care Cost Estimate Calculations

SCS Engineers TBPE Reg. # F-3407

APPENDIX 8A

CLOSURE COST ESTIMATE FORM FOR MUNICIPAL SOLID WASTE TYPE I LANDFILLS

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 8A-1 to 8A-15

Texas Commission on Environmental Quality Closure Cost Estimate Form for Municipal Solid Waste Type I Landfills

This form is for use by applicants or site operators to provide cost estimates for closure of MSW Type I landfills to meet the requirements in 30 Texas Administrative Code (TAC) Chapter 330, Section 330.63(j) and 30 TAC Chapter 330 Subchapter L. The costs to be provided herein are cost estimates for hiring a third party to close the largest waste fill area that could potentially be open in the year to follow and those areas that have not received final cover. If you need assistance in completing this form, please contact the MSW Permits Section in the Waste Permits Division at (512) 239-2335.

Facility Name: City of Waco Landfill

MSW Permit No.: 2400

Site Operator/Permittee Name and Mailing Address: City of Waco

Total Closure Cost Estimate (2020 Dollar Amount): \$2,454,380

I. Professional Engineer's Statement, Seal, and Signature

I am a licensed professional engineer in the State of Texas. To the best of my knowledge, this Closure Cost Estimate has been completed in substantial conformance with the facility Closure Plan and, in my professional opinion, is in compliance with Title 30 of the Texas Administrative Code, Chapter 330.

Name: Ryan Kuntz, P.E. Title: Vice President

Date:

Company Name: SCS Engineers Firm Registration Number: F-3407

Professional Engineer's Seal

Professional Engineer's Signature
Facility Name: <u>City of Waco Landfill</u> Permit No: <u>2400</u> Revision No.: <u>2</u> Date: <u>February 2021</u>

D. Closure Cost Estimates Worksheet

If any item listed in this worksheet is not applicable to the subject facility, enter "NA" (Not Applicable) in the affected field.

	Table 1.	Closure	Cost	Estimates	Worksheet.
--	----------	---------	------	-----------	------------

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²					
	1. Engineering Costs										
1.1	Topographic Survey	Acres	21.3	\$70.00	\$1,491	(4)					
1.2	Boundary Survey	Acres	502.5	\$15.00	\$7,538	(4)					
1.3	Site Evaluation	Acres	502.5	\$25.00	\$12,563	(4)					
1.4	Development of Plans	Lump Sum	1	\$35,000	\$35,000	(4)					
1.5	Contract Administration (bidding and award)	Lump Sum	1	\$2,830	\$2,830	(4)					
1.6	Closure Inspection and Testing	Acres	21.3	\$5,000	\$106,500	(4)					
1.7	TPDES and other Permits	Lump Sum	1	\$5,000	\$5,000	(4)					
1.8	Additional Engineering Cost Items (describe in attachments)	NA	NA	NA	NA	NA					
1.9 Engi	neering Costs Subtotal										
1.9.1	Engineering Costs Subtotal	NA	NA	NA	\$170,922	NA					
	2.0	onstruction	on Costs								
2.1 Mobi	lization										
2.1.1	Mobilization of Personnel and Equipment	Lump Sum	1	<mark>\$93,716</mark>	<mark>\$93,716</mark>	(4)					
2.2 Final	2.2 Final Cover System										
2.2.1 Sid	2.2.1 Side Slope Cover										
2.2.1a	Infiltration Layer – Compacted Clay	CY	41,233	\$2.50	\$103,083	(4)					
2.2.1b	Infiltration Layer – Geosynthetic Clay Liner	SF	NA	NA	NA	NA					
2.2.1c	Flexible Membrane Cover – HDPE	SF	742,200	\$0.55	\$408,210	(4)					
2.2.1d	Flexible Membrane Cover – LLDPE	SF	NA	NA	NA	NA					

Facility Name: <u>City of Waco Landfill</u> Permit No: <u>2400</u>

Revision	No.:	2	
Date:	Feb	oruary	2021

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²
<mark>2.2.1e</mark>	Drainage Layer – Aggregate (Geocomposite Termination)	LF	<mark>4,695</mark>	<mark>\$32.60</mark>	<mark>\$153,057</mark>	<mark>(4)</mark>
2.2.1f	Drainage Layer – Drainage Geocomposite Material	SF	742,200	\$0.60	\$445,320	(4)
2.2.1g	Erosion Layer	СҮ	54,978	\$2.75	\$151,190	(4)
2.2.1h	Vegetation	Acres	17.04	\$1,000	\$17,040	(4)
2.2.2 Тор	Slope Cover					
2.2.2a	Infiltration Layer – Compacted Clay	СҮ	10,311	\$2.50	\$25,778	(4)
2.2.2b	Infiltration Layer – Geosynthetic Clay Liner	SF	NA	NA	NA	NA
2.2.2c	Flexible Membrane Cover – HDPE	SF	185,600	\$0.50	\$92,800	(4)
2.2.2d	Flexible Membrane Cover – LLDPE	SF	NA	NA	NA	NA
2.2.2e	Drainage Layer – Aggregate	СҮ	NA	NA	NA	NA
2.2.2f	Drainage Layer – Drainage Geocomposite Material	SF	185,600	\$0.55	\$102,080	(4)
2.2.2g	Erosion Layer	СҮ	13,748	\$2.75	\$37,807	(4)
2.2.2h	Vegetation	Acres	4.26	\$1,000	\$4,260	(4)
2.2.3 Cell	ls for Class 1 Nonhazardous Ind	dustrial Wa	aste			
2.2.3a	Dike Construction	NA	NA	NA	NA	NA
2.3 Site	Grading					
2.3.1	Site Grading	Acres	21.3	\$500	\$10,650	(4)
2.4 Site	Fencing and Security					
2.4.1	Site Fencing and Security	Lump Sum	1	\$10,000	\$10,000	(4)
2.5 Landfill Gas Monitoring and Control System						
2.5.1	Gas Control Wells	NA	NA	NA	NA	NA
2.5.2	Gas Header Piping	NA	NA	NA	NA	NA
2.5.3	Gas Lateral Piping	NA	NA	NA	NA	NA
2.5.4	Flare Station	Lump Sum			NA	NA

Facility Name:City of Waco LandfillPermit No:2400

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²
2.5.5	Condensate Sumps	NA	NA	NA	NA	NA
2.5.6	Completion of LFG Monitoring System	NA	NA	NA	NA	NA
2.6 Grou	ndwater Monitoring System	า				
2.6.1	Groundwater Monitoring Well Installation	Each	NA	NA	NA	NA
2.6.2	Piezometer and Monitor Well Plugging and Abandonment	Each	NA	NA	NA	NA
2.7 Leac	hate Management					
2.7.1	Completion of Leachate Management System	NA	NA	NA	NA	NA
2.8 Storr	nwater Management					
2.8.1	Stormwater Drainage Management System	Lump Sum	1	\$313,050	\$313,050	(3)
2.9 Othe	r Cost Items					
2.9.1	Additional Construction Cost Items (describe in attachments)	NA	NA	NA	NA	NA
2.10 Con	struction Costs Subtotal					
2.10.1	Construction Costs Subtotal	NA	NA	NA	<mark>\$1,968,041</mark>	NA
	3. Storage and	Processin	g Unit Clo	sure Cost	S	
3.1	Waste Disposal	☐ Tons ⊠ Cubic Yards	180	\$1.67	\$301	(4)
3.2	Material Removal and Disinfection	Lump Sum	1	\$3,900	\$3,900	(4)
3.3	Demolition and Disposal	Each	8	\$50	\$400	(4)
3.4	Additional Storage and Processing Unit Closure Cost Items (describe in attachments)	NA	NA	NA	NA	NA
3.5 Stora	age and Processing Unit Clo	sure Cost	s Subtota	l		
3.5.1	Storage and Processing Unit Closure Costs Subtotal	NA	NA	NA	\$4,601	NA

 Facility Name:
 City of Waco Landfill

 Permit No:
 2400

Revision	No.: _	2	
Date:	Febr	uary 2	2021

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²	
4. Sum o	of Engineering, Construction	n, and Sto	orage and	Processin	g Unit Closi	ure Costs	
4.1	Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals	NA	NA	NA	\$2,143,564	NA	
	Į	5. Conting	jency				
5.1	Contingency (10% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	<mark>\$214,356</mark>	NA	
6. Contract Performance Bond							
6.1	Contract Performance Bond (2% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	\$42,871	NA	
	7. Third Party Administ	ration and	l Project N	/lanageme	ent Costs		
7.1	Third Party Administration and Project Management Costs (2.5% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	\$53,589	NA	
	8. T	otal Closu	re Costs				
8.1	Total Closure Costs (sum of amounts in Sections 4, 5, 6, and 7)	NA	NA	NA	<mark>\$2,454,380</mark>	NA	

¹ For items marked "specify," the responsible professional engineer will enter appropriate unit of measurement

- (3) Verifiable Data based on Actual Operations; or
- (4) Other sources of cost acceptable to the executive director of the TCEQ.

² Sources of Unit Costs for Cost Estimates table may include:

⁽¹⁾ Published Cost Estimator Manuals (e.g., RS Means);

⁽²⁾ Third Party Quotes (e.g., Environmental Field Services Contractors);

APPENDIX 8B

CLOSURE COST ESTIMATE CALCULATIONS

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 8B-1 to 8B-4

CITY OF WACO LANDFILL CLOSURE COST ESTIMATE CALCULATIONS

				742,200 sf			
			\$	0.55	/ sf =	\$	408,210
2.2.1e Drainage Layer -	Aggregate (Geo	composite [<u> Fermina</u>	tion)			
	2,825 ft	at landfill t	toe-of-sl	ope			
	<u>1,870</u> ft	for swale					
	4,695 11	total length	1				
	<u> </u>	f cross-secti	ional are	a of aggregate	9		
A constants @	1,913 0	y of aggrega	ale o	114 000		¢	24.50 (14
Aggregate @	\$ 60.00	/ cy =	\$	0.20	=	¢ \$	24.30 / 11
13 If geotextile	e drainage flan	@ @	\$	0.30	/ SI = / sf =	\$ \$	3.90 / If
10 If geocomp	osite runout	@	\$	0.50	/ sf =		5.50 / If
	Swale Geosynthe	tic Unit Rat	e.	1.870	lf @	\$	14.40 / lf
Toe-	of-Slope Geotext	ile Unit Rat	e:	2,825	lf @	\$	3.90 / lf
Geosyntehtic U	Jnit Rate (Weight	ted Average	e):			\$	8.10 / lf
Geocomposite Termination	: 4,695	lf @	\$	32.60	/ lf =	\$	153,057
2.2.1f Drainage Layer -	Drainage Geocor	nposite Ma	terial				
(double-sided 200 mil)							
			¢	742,200 sf	(..	¢	445 220
			\$	0.60	/ st =	\$	445,320
2.2.1g Erosion Layer							
	2.0 ft	thick					
	742,200 st	ľ					
	54,978 c	y for erosio	n layer				
	Soil available o	n-site for in	stallatio	n			
			\$	2.75	/ cy =	\$	151,190
2.2.1h Vegetation							
	17.04	ac @	\$	1,000	/ ac =	\$	17,040
2.2.2 Top Slope Cover							
2.2.2a Infiltration Layer	- Compacted Cla	ау					
	1.5 ft	thick					
	185,600 st	[
	10,311 c	y for infiltra	ation lay	er			
	Soil available o	n-site for in	stallatio	n			
			\$	2.50	/ cy =	\$	25,778
2.2.2c Flexible Membra	ne Cover - HDPH	Ξ					
				185,600 sf			
			\$	0.50	/ sf =	\$	92,800
2.2.2f Drainage Layer -	Drainage Geoco	mposite Ma	aterial				
(single-sided 200 mil)							
			¢	185,600 sf		¢	102 000
			\$	0.55	/ st =	\$	102,080
2.2.2g Erosion Layer							
	2.0 ft	thick					
	<u>185,600</u> st	t					
	13,748 c	y for erosio	n layer				
	Soil available o	n-site for in	stallatio	n			
			\$	2.75	/ cy =	\$	37,807
2.2.2h Vegetation							
	4.26	ac @	\$	1,000	/ ac =	\$	4,260
2.3 Site Grading							
	21.3	ac @	\$	500	/ ac =	\$	10,650

2.2.1c Flexible Membrane Cover - HDPE

CITY OF WACO LANDFILL CLOSURE COST ESTIMATE CALCULATIONS

2.4 Site Fencing and Security

If the site were closed prior to entire permitted footprint being filled, site fencing and security for the entire landfill would already be in place. Nevertheless, to ensure adequacy of the fencing for access control, an allowance was included in this estimate.

			A	lowance =	\$ 10,000
2.5 Landfill Gas Monitoring and Control Syste	m (See Note 3)			
0.0	ac @	\$	-	/ ac =	\$ -
2.6 Groundwater Monitoring System (See Not	e 4)				
2.6.1 Groundwater Monitoring Well Inst	allation				
0.0	per well @	\$	-	/ well =	\$ -
2.6.2 Piezometer and Monitor Well Plug	ging and Aban	donment			
0.0	per well @	\$	-	/ well =	\$ -

2.7 Leachate Management

The forced closure scenario assumes that the LCS has been installed. No expenses are projected for this item.

2.8 Stormwater Management							
Downchutes	800	lf @	\$	200.00	/ lf =	\$	160,000
Drainage Swales	5,250	lf @	\$	15.00	/ lf =	\$	78,750
Drainage Pond Excavation	19,800	cy @	\$	3.50	/ cy =	\$	69,300
Drainage Pond Outlet Structure					Lump Sum =	\$	5,000
		Stor	mwa	ater Managen	nent Subtotal =	\$	313,050
		(Cons	struction Co	sts Subtotal =	\$	1,968,041
3.0 Storage and Processing Unit (Closure Co	osts (Citizen's C	Colle	ection Statio	<u>n)</u>		
3.1 Waste Disposal							
6.0 roll	-off contai	ners (MSW)					
30 cy j	per contain	er					
180 cy o	of MSW						
			\$	1.67	/ cy =	\$	301
3.2 Material Removal and Disinfect	tion (See N	ote 5)					
Material							
Tires	1.0	Tire trailer @	\$	2,500	/ trailer =	\$	2,500
Metals	3.0	Containers @	\$	50	/ container =	\$	150
Cardboard/Plastics/others	2.0	Containers @	\$	50	/ container =	\$	100
White Goods	1.0	Containers @	\$	50	/ container =	\$	50
Disinfection (MSW Containers)	6.0	Containers @	\$	100	/ container =	\$	600
Disinfection (Facility)					Lump Sum =	\$	500
					Subtotal =	\$	3,900
3.3 Demolition and Disposal (See N	lote 6)						
	8.0	Containers @	\$	50	/ container =	\$	400
Storage and Processing Unit Closure Costs Subtotal =							

Note 1: As discussed in Section 2 of Attachment 9, this assumes approximately 21.3 acres of waste-in-place in Sector 1. **Note 2:** Aerial coverage of topographic survey only required for filled, excavated, and stockpiled areas.

Note 3: Based on landfill gas emissions from landfills of similar size and characteristics, it is assumed that the estimated emissions from the landfill at this stage of development will be below regulatory thresholds that would warrant installation of a LFG control system.

Note 4: Under a forced closure scenario, it is assumed the compliance boundary will not change, and the existing groundwater monitoring system will be sufficient at closure. This also assumes that no piezometers or monitoring wells will be required to be abandoned.

Note 5: Offsite disposal costs of all materials (tires, metals, containers, white goods, etc.) are included, with exception to MSW (see Item 3.1), as well as transporation costs for offsite removal/disposal of the containers, as applicable. Both the contents and containers for metals and white goods will be disposed at a metal salvage yard, concurrently. Disinfection of the MSW containers will occur after disposal at the landfill working face (Item 3.1).

Note 6: This includes disposal of roll-off containers at a metal salvage yard, after disinfection of MSW containers and disposal of cardboard, plastic, and other recycable materials (Item 3.2). It is also assumed there will be no demolition required on-site.

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III – SITE DEVELOPMENT PLAN ATTACHMENT 9 FINAL CLOSURE AND POST-CLOSURE PLAN

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

rvices Drive 104689 y: y:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 <u>Revision 3 – February 2021</u> SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

1	INTRO	DDUCTION	
2	FINA	- COVER SYSTEM	
	2.1	INTRODUCTION	9-2-1
	2.2	COVER SYSTEM DESIGN	9-2-1
	2.3	FINAL COVER QUALITY CONTROL PLAN	9-2-1
	2.4	FINAL COVER SYSTEM EVALUATION REPORT	9-2-9
3	CLOS	SURE PROCEDURES	
	3.1	SEQUENCE OF FINAL COVER PLACEMENT	9-3-1
	3.2	CLOSURE DURING ACTIVE LIFE	9-3-1
4	CLOS	URE SCHEDULE	
	4.1	FINAL CLOSURE REQUIREMENTS	9-4-1
	4.2	PROVISIONS FOR EXTENDING CLOSURE PERIOD	9-4-2
5	CLOS	SURE COST ESTIMATE	
6	POST	-CLOSURE CARE ACTIVITIES	
	6.1	MONITORING AND MAINTENANCE	9-6-1
	6.2	DECREASING POST-CLOSURE CARE PERIOD	9-6-2
	6.3	INCREASING POST-CLOSURE CARE PERIOD	9-6-2
	6.4	COMPLETION OF POST-CLOSURE CARE PERIOD	9-6-2
7	PERS	ON RESPONSIBLE FOR CONDUCTING POST-CLOSURE CARE ACTIVITIES	
8	POST	-CLOSURE LAND USE	
	8.1	INTENDED USE	9-8-1
	8.2	CONSTRAINTS OF POST-CLOSURE CONSTRUCTION	9-8-1
9	POST	-CLOSURE CARE COST ESTIMATE	

Appendices

9A

9B

9.1

Figures

Closure Plan Form Post-Closure Care Plan Form Final Closure Schedule

SCS Engineers TBPE Reg. # F-3407 The GP or his/her qualified representative will observe all destructive and non-destructive testing of repairs and will record the number of each repair, type, date and test outcome. Repairs that pass the non-destructive tests will be taken as an indication of an adequate repair. Repairs more than 150 ft long will also be required to have a destructive test performed. Repairs that fail the initial retest will be redone and retested until a passing test results. All work and testing of repairs will be fully documented in a repair log.

2.3.8 Geocomposite and Erosion Layer Testing

When placing overlying material on the geomembrane, every effort must be made to minimize wrinkle development and stress imparted to the geomembrane. If possible, cover should be placed during the coolest weather available. Small wrinkles should be isolated and covered as quickly as possible to prevent their growth. In no case will the geomembrane be allowed to fold over on itself.

2.3.8.1 Geocomposite

A single-sided and double-sided geocomposite will be installed over the geomembrane on the landfill topslope and sideslopes, respectively. The geocomposite will conform to the material and performance properties specified by the GP, consistent with project construction plans and technical specifications. The geocomposite transmissivity shall meet or exceed a transmissivity of $3.7 \times 10^{-4} \text{ m}^2/\text{sec}$ at a gradients of 0.05 and 0.25, for topslope and sideslopes, respectively (see Attachment 12, Appendix 12A – Leachate Generation Model Narrative) and the non-woven geotextile heat-bonded to the geonet shall comply with the minimum material properties presented in the calculations provided in Attachment 12, Appendix 12B. The drainage geocomposite manufacturer (or supplier), will conduct quality control testing at the minimum frequencies and test methods presented in Table 9-2-5 and certify that all materials delivered comply with project specifications. The material certifications shall be reviewed by the GP and approved for the project prior to acceptance of any of the material.

PRODUCT	TEST	METHOD	MINIMUM FREQUENCY	
Desin	Density	ASTM D1505 or D792	1 non-hotch and arows regin lat	
Kesin	Melt Flow Index	ASTM D1238	I per batch and every reshi lot	
	Density	ASTM D1505 or D792		
Geonet	Mass/Area	ASTM D1603	1 per 100,000 ft ² and every resin lot	
	Thickness	ASTM D5199		
	Mass/Area	ASTM D5261		
	Grab Tensile Strength	ASTM D4632		
Geotextile	Trapezoidal Tear Strength	ASTM D4533	1 per 100,000 ft ² and every resin lot	
	Apparent Opening Size	ASTM D4751		
	Permittivity	ASTM D4491		
Geocomposite	Transmissivity	ASTM D4716	One test per product type	

Table 9-2-5.	Manufacturer's	Testina	Schedule for	Geocomposite
				•••••

Additionally, conformance testing will be performed for transmissivity (ASTM D4716) and ply adhesion (D413) by an independent third-party laboratory chosen by the GP. Conformance testing for these parameters will be performed at least once per product type and project.

2.3.8.2 Erosion Layer

The erosion layer will consist of a 24-inch-thick soil layer, with the top 6 inches capable of sustaining vegetation in accordance with §330.457(a)(3). The required thickness of the layer will be verified by settlement plates or survey methods on an established grid system with not less than one verification point per 10,000 square feet of surface area. A minimum of two verification points is required. The selected grid will be the same for both beginning and finished elevations of the erosion layer, so that minimum thickness can be calculated and verified. All elevation calculations necessary for thickness determination will be included as part of the supporting documentation in the FCSER.

Drainage aggregate where sideslope geocomposite daylights (see Attachment 6C, Drawing 6C.2) at drainage swales or landfill toe-of-slope will consist of durable particles of crushed stone, natural gravel, or lightweight aggregate free of silt, clay, or other unsuitable materials. The aggregate shall have a loss of mass due to calcium carbonate of less than 15 percent (in accordance with J&L Test Designation S-105-89 or ASTM D3042 modified to use a solution of hydrochloric acid having a pH of 5). The drainage aggregate will meet the following gradation:

Sieve Size Square Opening	Percent Passing
2 inches	<u>100</u>
<u>¹/₂ inch</u>	<u>$0-5$</u>

The drainage aggregate shall be tested for gradation and calcium carbonate, in accordance with ASTM C136 and J&L Test Designation S-105-89 or ASTM D3042 modified, respectively, at the supply source at a minimum of 1 test per source/3,000 cubic yards, whichever is greater. The physical characteristics of the aggregate shall be evaluated through visual inspection and laboratory classification testing before construction and visual inspection during construction. The drainage aggregate may be tested during construction at the discretion of the CQA Monitor. The test results for the drainage aggregate will be included in the FCSER.

The erosion layer <u>and geocomposite termination drainage aggregate</u> does not require compaction control; however, it should be stable for construction and disposal traffic. The erosion layer will be deployed in "fingers" along the geomembrane or geocomposite to control the amount of slack and minimize wrinkles and/or folds. Soil cover will generally be placed in an up-slope direction on sideslopes so that stress imparted to the geocomposite and geomembrane is minimized. Care will be exercised in placement <u>of the erosion layer and drainage aggregate</u> so as not to shift, wrinkle or damage any underlying geosynthetic layers, and the placement methods will be documented.

2.4 FINAL COVER SYSTEM EVALUATION REPORT

Upon completion of each area of final cover construction and evaluation, the GP will prepare and submit in triplicate the FCSER, prepared in accordance with this plan, to the TCEQ for review and approval. This report will be submitted along with a construction documentation report.

Each FCSER will include a discussion of the construction of the final cover elements, a cover placement map which shows the covered area being submitted for approval and areas covered by all previous FCSER submittals with the dates of acceptance by the TCEQ. The map should depict the site grid system, graphic scale, and north arrow. The FCSER will be signed and/or sealed by the GP performing the evaluation and a representative of the site operator.

The construction documentation will contain a narrative describing the work performed and the testing procedures performed prior to and during construction, record drawings, and results of field and laboratory testing. The FCSER will include the following:

- All field and laboratory test documentation for infiltration layer soils, including test and sample locations plotted on plan view drawings representing each 6 inch lift;
- Geomembrane manufacturer's certifications, documentation of all manufacturer's and independent testing, geomembrane seaming and repair logs, seam testing results, and a site map showing locations of panels, repairs, and tests;
- Geocomposite manufacturer's certification and testing documentation; and
- Survey documentation for the thickness of the infiltration layer and erosion layer.

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 10 SOILS AND LINER QUALITY CONTROL PLAN

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – May 2020 Revision 1 – October 2020 Revision 2 – December 2020 <u>Revision 3 – February 2021</u> SCS Project No. 16216088.00

		TABLE OF CONTENTSSCS Engineers	
SECT	ω	TBPE Reg. # F-3407	DACE
SECT	IUN	A TELAND	PAGE
1	INTRO	DDUCTION	10-1-1
	1.1	PURPOSE	10-1-1
	1.2	DEFINITIONS	10-1-2
2	SUBG	RADE AND GENERAL FILL	10-1-1
	2.1	SUBGRADE	10-2-1
	2.2	GENERAL FILL	10-2-1
	2.3	SURVEYING AND LANDFILL MARKERS	10-2-2
	2.4	CONTROL OF SURFACE WATER	10-2-2
	2.5	EXCAVATION BELOW THE SEASONAL HIGH GROUNDWATER	
		TABLE	10-2-2
3	LOW	PERMEABILITY SOIL LINER	10-3-1
	3.1	INTRODUCTION	10-3-1
	3.2	QUALITY ASSURANCE TESTING	10-3-1
	3.3	CONSTRUCTION PROCEDURES	10-3-2
	3.4	PROCEDURES FOR ADDRESSING FAILING TESTS	10-3-4
	3.5	THICKNESS VERFICATION	10-3-6
	3.6	HYDROSTATIC CONSIDERATIONS - BALLASTING	10-3-6
4	GEOM	IEMBRANE	10-4-1
	4.1	INTRODUCTION	10-4-1
	4.2	QUALITY CONTROL AND QUALITY ASSURANCE TESTING	10-4-1
	4.3	INSTALLATION	10-4-2
	4.4	SEAM TESTING	10-4-6
	4.5	REPAIRS AND RETESTING	10-4-9
	4.6	REPAIRS	10-4-9
	4.7	GEOMEMBRANE ACCEPTANCE	10-4-11
5	DRAI	NAGE GEOCOMPOSITE	10-5-1
	5.1	INTRODUCTION	10-5-1
	5.2	DELIVERY	10-5-1
	5.3	QUALITY CONTROL TESTING	10-5-1
	5.4	INSTALLATION	10-5-2
	5.5	REPAIRS	10-5-3

TABLE OF CONTENTS (CONTINUED)

SECTION

PAGE

6	GEOT	EXTILES
	6.1	INTRODUCTION10-6-1
	6.2	DELIVERY
	6.3	QUALITY CONTROL TESTING10-6-1
	6.4	INSTALLATION
	6.5	REPAIRS
7	EQUI	PMENT ON GEOSYNTHETIC MATERIALS10-7-1
8	LEAC	CHATE COLLECTION PIPING
	8.1	INTRODUCTION10-8-1
	8.2	DELIVERY10-8-1
	8.3	QUALITY CONTROL TESTING10-8-1
	8.4	INSTALLATION10-4-2
9	DRAI	NAGE AGGREGATE10-9-1
	9.1	MATERIALS10-9-1
	9.2	TESTING10-9-1
10	PROT	ECTIVE COVER10-10-1
	10.1	MATERIALS10-10-1
	10.2	INSTALLATION10-10-1
	10.3	THICKNESS VERIFICATION10-10-2
11	DOCU	JMENTATION
	11.1	INTRODUCTION10-11-1
	11.2	LINER EVALUATION REPORTS10-11-1
	11.3	LINER EVALUATION REPORT (LER) FORMAT10-11-1
	11.4	INTERIM STATUS REPORT
	11.5	BALLAST EVALUATION REPORT (BER)
Apper	ndices	* X *
10A 10B 10C 10D	Mater Season Sampl Typica	ial Testing Schedules nal High Groundwater Table Map e Ballast Calculations al Underdrain Design SCS Engineers
		TBPE Reg. # F-3407
Revisi	ion 2 3	10-iii SCS ENGINEERS

Revision 23

December 2020 February 2021

When the base of the cell excavation extends below the SHWT, the stability of the liner system against hydrostatic uplift is considered for two cases: (1) short-term, i.e., during construction and filling operations; and (2) long-term, i.e., after filling and into post-closure. Short-term stability against uplift of the liner system will be required by installation of an active underdrain system when excavation is below the SHWT. Underdrain systems constructed beneath the landfill cells prevent development of excessive hydrostatic uplift pressures until an adequate thickness of soils and waste ballast is achieved. Long-term stability against uplift of the liner systems is provided by the weight of the clay liner, liner protective cover, soil ballast, waste materials, and final cover system components, or collectively, ballast. Once an adequate thickness of ballast is provided, underdrain systems, if employed to provide short-term stability, are decommissioned upon approval from the TCEQ. The assumptions and calculations for the ballast evaluation and underdrain design are described in Section 11.5 (see also Appendix 10C) and Appendix 10D, respectively.

2.5.1 Control of Seepage During Construction (Short-Term Groundwater Control)

The base of the proposed excavation will be located in the Taylor Group (Wolfe City Formation), shale-marl, portions of which may be below the seasonal high groundwater table. Hydraulic conductivity test results for the geologic stratum at the Site are summarized in Attachment 5 – Geotechnical/Stability Analysis and the laboratory results of the hydraulic conductivity results are provided in Attachment 4 – Geology and Groundwater Report, Appendix III-4.F.

If groundwater seepage is observed in measureable quantities that could be detrimental to the overlying liner or softening of the subgrade, the GP will provide a summary of his observations of the seepage, the methods and procedures used to control the seepage and stabilize the foundation soils, and verification that the seepage has been controlled prior to liner placement. If groundwater seepage is observed from an area during construction that will be detrimental to the overlying liner or if excavation is below the SHWT, an underdrain system to control groundwater will be employed for that cell area, and the design of the underdrain system will be confirmed designed by a Professional Engineer licensed in the State of Texas using the calculation methodology presented in Appendix 10D. Any underdrain system installed within a respective cell will be documented in the SLER and GLER for the respective constructed cell. This The underdrain design presented in Appendix 10D is based on the assumed SHWT map described in Section 2.5.2 and presented in Appendix 10B. This design represents the worst case scenario of groundwater seepage and can be used directly for design of an underdrain system for all future disposal cells/areas of the landfill.

As discussed in Section 2.5, when installed, an underdrain system may be decommissioned upon approval of TCEQ once an adequate thickness of ballast is achieved for long-term stability against hydrostatic uplift. A Ballast Evaluation Report (BER) will be prepared and submitted to TCEQ, as discussed in Section 11.5, when ballast or dewatering (i.e., for cells/areas with an installed underdrain system) is no longer necessary in accordance with §330.337(j).

2.5.2 Seasonal High Groundwater Table

A SHWT map has been developed based on standard standpipe piezometers and vibrating wire piezometers (VWPs) installed at the site during the subsurface and groundwater investigation (see Attachment 4, Section 6). Based on the observations presented in Attachment 4, the shallow occurrences of groundwater do not appear to be uniform across the site and may occur in isolated pockets; there exists a continuously saturated groundwater zone that occurs at deeper elevations below the base of the proposed excavation grades; and the shallow and deep occurrences of groundwater do not appear to be hydraulically connected. However, as a conservative approach to sizing underdrain components for short-term groundwater control and evaluating long-term groundwater control (waste or soil ballast), if needed, the SHWT map was developed with a culmination of high water level readings from both the shallow standpipe piezometers/VWPs and deep VWPs installed at the site during the groundwater investigation. This SHWT map, provided in Appendix 10B, depicts the measurement points, including the seasonal high groundwater table (SHWT) levels, and future excavation grades. As shown on the map, portions of the excavation grades extend below this assumed SHWT.

As noted in this SLQCP, the SHWT map will be reviewed and updated, if necessary, prior to the design of each cell based on the most recent data available at the time of design. If the groundwater elevations at monitoring points has increased since the last cell construction, the SHWT map will be revised upward to reflect those increases. An updated SHWT map will be presented in the SLER and GLER. In addition, observations of the subgrade soil characteristics and indications of groundwater seepage (if any) and potential impacts to the dewatering and ballast calculations will also be documented in the SLER and GLER.

- All test documentation for leachate collection and protective cover layers (GLER);
- For geomembrane, include manufacturer's certifications, documentation of all manufacturer's and independent testing, seam tests (non-destructive and destructive seam testing), and seaming and repair records (GLER);
- Manufacturer's certification and testing documentation for all geosynthetics (SLER/GLER); and
- Survey documentation of the thickness of the soil liner (SLER), a geomembrane drawing showing locations of panels, repairs, and destructive tests (GLER), leachate collection (GLER), and protective cover layers (GLER).

11.4 INTERIM STATUS REPORT

For any liner that will remain uncovered with waste for a period exceeding 6 months, Interim Status Reports will be prepared and submitted to the TCEQ, in accordance with 30 TAC §330.341(d). Any damaged areas will be repaired promptly. A new report shall be submitted on the new construction for all liners that need repair due to damage.

11.5 BALLAST EVALUATION REPORT (BER)

If ballast or an underdrain system are required during cell construction, the Owner/Operator will submit a Ballast Evaluation Report (BER) following confirmation that an adequate thickness of ballast has been placed or dewatering through the use of an underdrain is no longer necessary. An underdrain system may be decommissioned upon approval of TCEQ once an adequate thickness of ballast is achieved for long-term stability against hydrostatic uplift, as described in Section 2.5. If a BERballasting is required, a BERit will be prepared and submitted to the TCEQ, in accordance with the requirements set forth in 30 TAC §330.337(j).

The BER will incorporate the following components:

- Summary of soil stratigraphy and soil properties exposed on the bottom and sideslopes of the constructed cell.
- Adjusted seasonal high water table based on groundwater monitoring well data and other site observations.
- Calculation of ballast required, and type of ballast to be used (soil and/or waste), as described in Section 11.5.1.
- Discussion of whether an underdrain system or other dewatering system will be installed, as described in Section 2.5. In the event a dewatering system is required, the design of the dewatering system will be submitted with the SLER, GLER and BER and maintained in the Site Operating Record.

- Method of controlling uplift forces during construction (low-permeability foundation soil, dewatering, or combination).
- Monitoring of dewatering system, if required, to demonstrate that hydrostatic forces did not develop during liner construction.
- Subgrade and top-of-liner elevations, as reported in the respective SLER and confirmation of liner weight.
- Certification that ballast met the criteria established in Section 11.5.1 and in the liner quality control plan.
- The BER will be signed and sealed by an independent licensed professional engineer performing the evaluation and will include the signature of the facility operator or their authorized representative.

A BER should be submitted to the TCEQ after sufficient ballast is in place to demonstrate adequate uplift resistance against the long-term seasonal high groundwater table for a given waste phase. If the TCEQ provides no response within 14 days of the date of receipt of the BER, the Owner may discontinue the operation of the underdrain system, in the event a dewatering system is installed.

11.5.1 Ballast Calculations (Long-Term Groundwater Controls)

Calculations will be prepared that demonstrate that the weight of the liner system, including ballast, is sufficient to offset any unbalanced upward or inward hydrostatic forces on the liner by a factor of 1.2 (for soil ballast) or 1.5 (for waste ballast). Sample ballasting calculations are provided in Appendix 10C. The unit weight values used in the sample calculations are assumptions only. Field-verified values will be incorporated into the BER.

11.5.2 Soil as Ballast

If soil is to be used as ballast, it will be placed after liner system construction. Soil ballast may include the protective cover, leachate collection system, additional soil over the liner or waste, and intermediate and final cover soils. For soil ballast placed during cell construction, the SLER should include a statement that the soil ballast, or a component of the ballast (i.e. protective cover or additional soil over protective cover) will be documented in the GLER, which will include the following field confirmations and calculations:

- Determine the density of the soil used as ballast. An estimate of soil density will be developed using geotechnical properties developed during soil construction.
- Initial and final survey of the area to receive soil as ballast, which should be accomplished at the same frequency required in this SLQCP for the liner. The top of clay survey or geomembrane survey may be used as the initial survey for soil ballast.

• Calculate the thickness of soil utilized as ballast (from survey), to determine the resulting confining pressure from the soil ballast. The calculated confining pressure for soil ballast will be reduced by a factor-of-safety of 1.2 in accordance with 30 TAC §330.337(b)(1).

11.5.3 Waste as Ballast - 40,000 Pound or Greater Compactor

If waste is a component used for ballast, the approval of the GLER must first be received from TCEQ prior to ballasting. The BER must include (in addition to the items described in Section 11.4) the following documentation and calculations:

- Certification from the landfill operator that the wheeled compactor used to compact the waste weighs no less than 40,000 pounds, and that the compactor was utilized during the entire period of placing the waste ballast.
- Certification from the landfill operator that the type of waste placed in the lower 5 feet was free of brush and large bulky items, which would damage the underlying system or which cannot be compacted to the required density.
- Initial and final survey of the area to receive waste as ballast to determine the thickness of waste. The survey of the top of protective cover can be used as the initial survey.
- Calculation of the confining pressure of the waste by assuming a density of 1,200 pounds per cubic yard in accordance with 30 TAC §330.337(h)(2). The confining pressure for the waste ballast will be reduced by a factor-of-safety of 1.5.

11.5.4 Waste as Ballast - Less Than 40,000 Pound Compactor

If a less than 40,000 pound compactor is used, calculations to determine the in-place density of waste will be performed. These calculations will include the following:

- Initial survey of the area to receive waste as ballast. The survey of the top of the protective cover may be used for this initial survey.
- Weight of waste placed, based on actual measurements of truck weights at the scalehouse.
- Survey of the top of waste to document that the thickness calculated in the GLER has been placed.
- Calculate the volume of waste used as ballast from the survey. The actual density of the placed waste will be calculated by dividing the previously recorded weight by the volume of waste determined by the survey. The calculated density will be used in the ballast calculations. In the event the calculated density is greater than 1,200 pounds per cubic yard, a density of 1,200 pounds per cubic yard will be used for the ballast calculations. As previously stated, the confining pressure for the waste ballast will be reduced by a factor of safety of 1.5 in accordance with 30 TAC §330.337(h)(2).

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III SITE DEVELOPMENT PLAN -ATTACHMENT 12 LEACHATE AND CONTAMINATED WATER MANAGEMENT PLAN

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 <u>Revision 3 – February 2021</u> SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

PAGE

1	PURP	OSE AND SCOPE	12-1-1
2	LEAC	HATE AND CONTAMINATED WATER GENERATION	12-2-1
	2.1	GENERAL PROCESS	12-2-1
	2.2	LEACHATE GENERATION	12-2-1
	2.3	STORMWATER MANAGEMENT	12-2-1
3	LEAC	HATE COLLECTION SYSTEM	12-3-1
	3.1	SYSTEM LAYOUT	12-3-1
	3.2	LEACHATE DRAINAGE LAYER	12-3-1
	3.3	LEACHATE COLLECTION PIPING	12-3-1
	3.4	LCS DURABILITY AND LONG-TERM PERFORMANCE	12-3-2
	3.5	LEACHATE COLLECTION SUMPS AND PUMPS	12-3-2
	3.6	DRAINAGE AGGREGATE	12-3-3
4	LEAC	HATE AND CONTAMINATED WATER STORAGE	12-4-1
5	LEAC	HATE AND CONTAMINATED WATER DISPOSAL AND RECIRCULATION	

Drawings

- 12.1 East Disposal Area Leachate Collection System Layout Plan
- 12.2 West Disposal Area Leachate Collection System Layout Plan
- 12.3 Bottom Liner Details
- 12.4 Leachate Collection System Details

Appendices

- 12A Leachate Generation Model
- 12B Leachate Collection System Design Calculations
- 12C Containment Berm and Diversion Berm Calculations
- 12D HDPE Pipe Corrosion Durability Literature

SCS Engineers TBPE Reg. # F-3407

APPENDIX 12A

LEACHATE GENERATION MODEL (HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) OUTPUT FILES)

- Leachate Generation Model Narrative
- Climatological Data
- Help Model Summary Sheets
- HELP Output Files (Without Leachate Recirculation)
- HELP Output Files (With Leachate Recirculation)

LEACHATE GENERATION MODEL NARRATIVE

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III SITE DEVELOPMENT PLAN ATTACHMENT 12, APPENDIX A LEACHATE GENERATION MODEL NARRATIVE

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – July 2019 Revision 1 – December 2020 <u>Revision 2 – February 2021</u> SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

1

PAGE

LI	EACH	IATE GENERATION MODEL	5
1	.1	OBJECTIVE	.5
1	.2	LEACHATE COLLECTION SYSTEM	.5
1	.3	METHOD OF ANALYSIS	.5
1	.4	MODEL SETUP	.6
1	.5	LEACHATE RECIRCULATION	0
1	.6	HELP MODEL RESULTS	1
1	.7	REFERENCES1	1

SCS Engineers TBPE Reg. # F-3407 conditions, the hydraulic conductivity was assumed to be 1.0×10^{-3} cm/s (i.e., HELP default) for the top 100 ft of waste. For the remaining lower thickness of waste, where the waste has been compacted and in-place for longer periods, 5.0×10^{-4} cm/s was used as hydraulic conductivity

Lower hydraulic conductivity of landfilled MSW is attributed to increased overburden stress and increased finer particles resulting from degradation. Reddy et. al. (2011) reported two orders of magnitude reduction in hydraulic conductivity of synthetic MSW with degradation. In another study, hydraulic conductivities of 1 x 10^{-4} cm/s to 1 x 10^{-7} cm/s are reported for MSW for uncompacted MSW and MSW at 90 feet depth, respectively (Reddy et. al., 2009).

1.4.3.5 Daily and Intermediate Cover

The daily cover for active condition consists of a 6-inch-thick layer of soil and the intermediate cover for the interim condition has an additional 6-inch layer of soil for a total thickness of 12 inches. The daily and intermediate cover were assumed to be clayey soil, with a hydraulic conductivity of 1.7×10^{-5} cm/s. Default soil characteristics were used for the daily and intermediate cover soils (HELP default texture 15).

1.4.3.6 Final Cover

Final cover on the landfill topslope and sideslopes from top to bottom will consist of a 24-inch thick erosion layer, a geocomposite drainage layer, a 40-mil geomembrane, and an 18-inch thick infiltration layer (compacted clay). The geocomposite will be installed to drain infiltrating water from the final cover. However, only Both the topslope and sideslope cover systems was were evaluated in the HELP modeling. The minimum manufactured thickness of the geocomposite will be 200-mil (approximately 0.20 inches). To evaluate the hydraulic performance of the geocomposite layer, the hydraulic conductivity value used in the HELP model was adjusted until the maximum depth of stormwater percolating through the erosion layer to the geocomposite (for peak daily flow) was less than or approximately equal to the thickness of the geocomposite (i.e., less than 0.20 inches). In this manner water flow above the geomembrane was confined in the geocomposite layer only. Based on this evaluation the minimum allowable transmissivity was calculated based on the hydraulic conductivity to be 3.7×10^{-4} m²/sec (i.e., T_{min} = k x t x 2.54 cm/in x 0.0001 m²/cm², where $T_{min} =$ Transmissivity [minimum, m²/sec], k = hydraulic conductivity [cm/sec], and t = Geocomposite Thickness [inches]) at $\frac{1}{2}$ gradients of 0.05 and 0.25 for topslope and sideslopes, respectively. For the sideslope geocomposite analysis, the average annual drainage collected from the topslope over the modeling period was input into the sideslope model, as subsurface inflow into the geocomposite drainage layer. This approach models the conveyance of water flow within the geocomposite associated with the topslope and sideslope flow combined (i.e., water collected from the topslope flows into the sideslope geocomposite). The result of the sideslope cover system analysis demonstrates that the maximum depth of stormwater within the geocomposite is limited to the thickness of the geocomposite (i.e., 0.20 inches) for a maximum drainage length of 375 feet. As a result, the final cover design includes daylighting the geocomposite at drainage swales and the landfill perimeter top of slope located no greater than 375 feet apart, as shown in Attachment 6C, Drawing 6C.2.

For the purposes of this model, it has been assumed that the erosion layer will consist of a clayey soil with a hydraulic conductivity of 1.7×10^{-5} cm/s, consistent with soil modeled from daily and

intermediate cover described in Section 1.4.3.5. The geomembrane was modeled for good installation quality, 4 defect per acre, and a pinhole density of 1 hole/acre (Berger and Schroeder, 2013). The infiltration layer will consist of compacted soil with a hydraulic conductivity of 1.0×10^{-5} cm/s or less. Default soil characteristics from the HELP model were selected to represent the layers within the final cover system.

1.5 LEACHATE RECIRCULATION

As previously mentioned, the active and interim conditions, described in Section 1.4.1 of this appendix, were also modeled for leachate recirculation. For both scenarios, the weather data described in Section 1.4.2 was used in the model. These conditions are considered representative of the worst case below-grade and above-grade conditions for which leachate generation and resulting leachate head would be affected by leachate recirculation.

A synthetic storm duration of 10 years was modeled for the active condition. A synthetic storm duration of 50 years was modeled for the interim conditions, which is greater than the estimated site life of the landfill (note, see Part III narrative, Section 2.2 for estimated site life of the landfill). Since the maximum time leachate recirculation can take place is less than 50 years, and in accordance with standard engineering practice, this duration is appropriate for analysis of the impacts on the leachate collection system associated with leachate recirculation. Furthermore, this duration conservatively approximates the longest time period for which the below-grade and above-grade waste disposal will likely occur for a given sector of the landfill.

Incorporating the above assumptions, for both the active and interim conditions, the percentage of leachate recirculated was increased within the HELP model until the calculated leachate head on the liner was less than or equal to the compressed thickness of the geocomposite. The model results for leachate recirculation are summarized in the HELP Model Summary Sheet (with leachate recirculation) provided in this appendix.

The allowable leachate recirculation volume is provided in the table below. Based on the results of the leachate recirculation demonstration, the allowable leachate recirculation volume for below-grade and above-grade waste disposal is represented by the active, 10-foot waste condition and interim, 170-foot waste condition, respectively. As shown, during periods of leachate recirculation, leachate head on the liner is maintained within the compressed thickness of the geocomposite. However, it should be noted that in all cases, actual leachate recirculation will also be controlled by the ability of the landfill operator to meet the 30-centimeter maximum leachate head over the bottom liner criteria, as verified by monitoring of the leachate levels at the sumps, as described in Attachment 12, Section 3.5.

Fill Condition	Average Annual Recirculation (cf/yr/ac) ¹	Peak Leachate Head (in)	Allowable Recirculation (gallons/yr/ac) ²
Below-Grade	80,200	0.22	599,900
Above-Grade	26,690	0.19	199,640

ALLOWABLE LEACHATE RECIRCULATION

¹ Referenced from the HELP Model Output (with leachate recirculation) provided in this appendix.

² The allowable recirculation values pertain to areas draining to a common sump.

1.6 HELP MODEL RESULTS

The HELP model results are presented in the attached HELP Model Summary Sheets for both "without leachate recirculation" and "with leachate recirculation." Additionally, the HELP model output files are also provided in this appendix. As presented in the HELP model output, the depth of leachate over the bottom liner is predicted to be confined to the geocomposite lateral drainage layer, which is well below the 30 centimeter regulatory requirement, whether during periods of with or without leachate recirculation.

1.7 REFERENCES

Berger, K. and Schroeder, P.R. "The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for HELP-D Version 3.95 D", Version 3.95 D, Institute of Soil Science, University of Hamburg, Germany, 2013.

Reddy, K., Hettiarachchi, H., Gangathulasi, J., and Bogner, J.E. "Geotechnical Properties of Fresh Municipal Solid Waste at Orchard Hills Landfill, USA", Waste Management, 29, pp. 952-959, 2009.

Reddy, K., Hettiarachchi, H., Gangathulasi, J., and Bogner, J.E. "Geotechnical Properties of Municipal Solid Waste at Different Phases of Biodegradation", Waste Management, 31, pp. 2275-2286, 2011.

HELP OUTPUT FILES (WITHOUT LEACHATE RECIRCULATION)

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 12A-19 to 12A-58(11) **UNMARKED VERSION**

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 4 GEOLOGY AND GROUNDWATER REPORT

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – May 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

<u>SECT</u>	ION	PAGE
1		4-1-1
2	REGIONAL PHYSIOGRAPHY, TOPOGRAPHY, AND CLIMATE	4-2-1
	2.1 PHYSIOGRAPHY AND TOPOGRAPHY	4-2-1
	2.2 CLIMATE	4-2-1
3	GEOLOGY.	4-3-1
	3.1 GEOLOGIC SETTING	4-3-1
4	HYDROGEOLOGY	4-4-1
	4.1 REGIONAL HYDROGEOLOGY	4-4-1
	4.2 LOCAL GROUNDWATER USE	4-4-1
5		4-5-1
	5.1 PREVIOUS INVESTIGATION PROGRAMS	4-5-1
	5.2 SITE STRATIGRAPHY	4-5-2
	5.3 SOIL ENGINEERING PROPERTIES	4-5-3
6	GROUNDWATER INVESTIGATION REPORT	4-6-1
	6.1 STANDPIPE PIEZOMETERS	4-6-1
	6.2 VIBRATING WIRE PIEZOMETERS	4-6-1
	6.3 GROUNDWATER INVESTIGATION RESULTS	4-6-2
7	POLLUTANT PATHWAYS	4-7-1
	7.1 LOCAL HYDROGEOLOGY	4-7-1
8	GROUNDWATER QUALITY CHARACTERIZATION	4-8-1
	8.1 OVERVIEW OF THE EXISTING GROUNDWATER MONITORING SYSTEM	4-8-1
	8.2 GROUNDWATER MONITORING DATA	4-8-1
	8.3 REGIONAL GROUNDWATER QUALITY	4-8-1
9	GROUNDWATER MONITORING PLAN	4-9-1
	9.1 EXISTING GROUNDWATER MONITORING SYSTEM	4-9-1
	9.2 PROPOSED GROUNDWATER MONITORING SYSTEM	4-9-1
	9.3 GROUNDWATER MONITORING SYSTEM CERTIFICATION	4-9-3
10	GROUNDWATER SAMPLING AND ANALYSIS REQUIREMENTS	4-10-1
11	SUMMARY	4-11-1
12	REFERENCES	4-12-1

Figures

- Figure 4.1 Site Location Map
- Figure 4.2 Physiographic Map of Texas
- Figure 4.3 General Topographic Map
- Figure 4.4 Geologic Map
- Figure 4.5 Structural Cross Sections of Regional Geology and the Trinity Aquifer
- Figure 4.6 Seismic Impact Zone Map
- Figure 4.7 Tectonic Map of Texas
- Figure 4.8 Trinity Aquifer
- Figure 4.9 Boring Location Map
- Figure 4.10 Geologic Cross Section A-A'
- Figure 4.11 Geologic Cross Section B-B'
- Figure 4.12 Geologic Cross Section C-C'
- Figure 4.13 Geologic Cross Section D-D'
- Figure 4.14 Geologic Cross Section E-E'
- Figure 4.15 Geologic Cross Section F-F'
- Figure 4.16 Piezometer Location Map
- Figure 4.17 VWP Location Map

- Figure 4.18 July 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.18A December 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.19 July 2020 Deep VWP Potentiometric Map
- Figure 4.19A December 2020 Deep VWP Potentiometric Map
- Figure 4.20 Proposed GWM System Map
- Figure 4.21 Typical Monitoring Well Detail

<u>Tables</u>

- Table III-4.1 Regional Physiography
- Table III-4.2 Waco Average Monthly Rainfall
- Table III-4.3 Geologic Units and their Water-Bearing Properties
- Table III-4.4 Recorded Wells within 1 Mile
- Table III-4.5 Coordinates and Elevations of Borings
- Table III-4.6 Properties of Unit I
- Table III-4.7 Properties of Unit II
- Table III-4.8 Properties of Unit III
- Table III-4.9 Existing Piezometer Completion Data
- Table III-4.10 Summary Initial and Static Water Level Data
- Table III-4.11 Vibrating Wire Piezometer Completion Data
- Table III-4.12 Vibrating Wire Piezometer Inferred Groundwater Elevation Data
- Table III-4.13 Summary of Aquifer (Slug) Tests Performed by SCS Engineers
- Table III-4.14 Summary of Horizontal Flow Rate Calculation Data
- Table III-4.15 Proposed Monitoring Well Information

Appendices

Appendix III-4.A	Soil Resource Report
Appendix III-4.B	Well Search Data
Appendix III-4.C	Soil Boring Plan

Appendix III-4.D **Boring Logs** Appendix III-4.E State Well Reports Appendix III-4.F Geotechnical Investigation Reports Appendix III-4.G Vibrating Wire Piezometer Manual and Calibration Forms Appendix III-4.H Standpipe Piezometer Completion Data Appendix III-4.I Vibrating Wire Piezometer Completion Data Appendix III-4.J Precipitation and Groundwater Elevation Data Appendix III-4.K Standpipe Piezometer Historic Water Level Data Appendix III-4.L Vibrating Wire Piezometer Historic Water Level Data Appendix III-4.M Slug Test Data

FIGURES

- Figure 4.1 Site Location Map
- Figure 4.2 Physiographic Map of Texas
- Figure 4.3 General Topographic Map
- Figure 4.4 Geologic Map
- Figure 4.5 Structural Cross Sections of Regional Geology and the Trinity Aquifer
- Figure 4.6 Seismic Impact Zone Map
- Figure 4.7 Tectonic Map of Texas
- Figure 4.8 Trinity Aquifer
- Figure 4.9 Boring Location Map
- Figure 4.10 Geologic Cross Section A-A'
- Figure 4.11 Geologic Cross Section B-B'
- Figure 4.12 Geologic Cross Section C-C'
- Figure 4.13 Geologic Cross Section D-D'
- Figure 4.14 Geologic Cross Section E-E'
- Figure 4.15 Geologic Cross Section F-F'
- Figure 4.16 Piezometer Location Map
- Figure 4.17 VWP Location Map
- Figure 4.18 July 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.18A December 2020 Piezometer/Shallow VWP Potentiometric Map
- Figure 4.19 July 2020 Deep VWP Potentiometric Map
- Figure 4.19A December 2020 Deep VWP Potentiometric Map
- Figure 4.20 Proposed GWM System Map
- Figure 4.21 Typical Monitoring Well Detail

CITY OF WACO SOLID WASTE SERVICES

05/2020

4.9

IGURE:

EXISTING BORING LOCATIONS - I INDICATE SOIL BORINGS WHICH WERE DRILLED TO A DEPTH OF 5-FEET BELOW EDE (I.E., 500 FT MSL) AND EXISTING BORING LOCATIONS - II INDICATE SOIL BORINGS WHICH WERE DRILLED TO A DEPTH OF 30 FEET BELOW EDE (I.E., 475 FT MSL).

FOR PERMITTING PURPOSES ONLY

	SCS ENGINEERS STEARUS, CONRAD AND SCHMIDT STEARUS, CONRAD AND SCHMIDT CONSULTING ENGINEERS HIGT THE EGN BECORD, TA 70021 HIGT CONFAL THE CONFIGURE STATUS CONFID MACTIC SCHOOL DATION CONFID MACTIC SC
	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS 100 CONTAL AND SCHMIDT CONTACT ON AND SCHMIDT
CLENT CITY OF WACO SOI ID WASTF SFRVICFS	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS 1001 CENTRAL, DRVL, SURF SC, TX 7002 1001 CENTRAL, SURF
	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS 1901 CENTRAL DRIVE, SUITE 550, BEDFORD, TX 76021 PH (817) 577-2388 FAX NO. (817) 577-2388

40 400

LEGEND:

	EXISTING GRADE (SEE NOTE 1)
<u> </u>	UNIT 1/UNIT 2 CONTACT WEATHERED/UNWEATHERED SHALE
	TRANSITIONAL CONTACT

NOTES:

1. EXISTING TOPOGRAPHY SHOWN ON THIS PLAN WAS DEVELOPED BY DAS GEOSPATIAL, FLOWN ON JULY 03, 2018.

2. SEE APPENDIX III-4.D FOR SUBSURFACE MATERIAL LEGEND.

FOR PERMITTING PURPOSES ONLY

TABLES

- Table III-4.1 Regional Physiography
- Table III-4.2 Waco Average Monthly Rainfall
- Table III-4.3 Geologic Units and their Water-Bearing Properties
- Table III-4.4 Recorded Wells within 1 Mile
- Table III-4.5 Coordinates and Elevations of Borings
- Table III-4.6 Properties of Unit I
- Table III-4.7 Properties of Unit II
- Table III-4.8 Properties of Unit III
- Table III-4.9 Existing Piezometer Completion Data
- Table III-4.10 Summary Initial and Static Water Level Data
- Table III-4.11 Vibrating Wire Piezometer Completion Data
- Table III-4.12 Vibrating Wire Piezometer Inferred Groundwater Elevation Data
- Table III-4.13 Summary of Aquifer (Slug) Tests Performed by SCS Engineers
- Table III-4.14 Summary of Horizontal Flow Rate Calculation Data
- Table III-4.15 Proposed Monitoring Well Information

Boring Number	Easting	Northing	Hollow Stem Auger Type	Ground Elevation (ft-msl)	Depth Drilled (ft-bgs)	Elevation of Bottom (ft-msl)
B-1	3353867.3	10599904.81	7 1⁄4	551.67	82.0	469.7
B-1 (PZ-1)	3353867.3	10599904.81	7 ¼	551.74	39.5	512.24
B-2	3354595.81	10598697.6	7 1⁄4	549.78	55.0	494.78
B-3	3355259.69	10597665.32	7 1⁄4	541.1	72.0	469.1
B-3 (PZ-3)	3355259.69	10597665.32	7 1⁄4	541.20	45.0	496.2
B-4	3355130.33	10599528	7 ¼	550.04	101.0	449.04
B-5	3355913.87	10600728.3	7 1⁄4	541.38	47.0	494.38
B-6	3355562.96	10602041.9	7 ¼	545.55	70.7	474.85
B-7	3356670.83	10599929.6	8 ¼	530.50	55.5	475
B-8 (PZ-8)	3357935.82	10599489.18	8 ¹ ⁄4	550.34	75.0	475.34
B-9 (PZ-9)	3355762.31	10599314.37	8 ¹ ⁄4	535.30	40.0	495.30
B-9 cont.	3355762.31	10599314.37	8 1/4	535.30	135.0	400.30
B-10	3356199.16	10602404.1	8 1/4	545.40	53.0	492.4
B-11	3357048	10602933.5	7 1⁄4	553.50	78.5	475
B-12	3355833.07	10601575	8 1⁄4	542.85	48.0	494.85
B-13	3357768.09	10600645.6	8 1/4	555.15	80.0	475.15
B-14	3356543.77	10602016.3	8 1⁄4	539.20	65.5	473.7
B-15	3357265.27	10602471.1	7 ¼	563.35	70.0	493.35
B-16	3354706.01	10599996.8	8 1⁄4	560.25	61.0	499.25
B-17	3355568.96	10600519.6	7 1⁄4	546.75	71.0	475.75
B-18 (PZ-18)	3356694.76	10601254.04	8 1⁄4	534.84	56.0	478.84
B-19	3357202	10601429	7 ¼	562.05	87.0	475.05
B-20 (PZ-20)	3357666.42	10601846.53	7 ¼	564.68	73.0	491.68
B-21	3357008	10600682	8 ¼	538.75	45.0	493.75
B-22	3358132.03	10601234	8 ¼	555.00	80.0	475
B-23	3355207.68	10598431	8 ¼	540.08	45.7	494.38
B-24	3355746.69	10598780.1	7 1⁄4	533.63	59.2	474.43
B-25	3356251.06	10599102.9	7 1⁄4	533.25	33.0	500.25
B-26	3356929.04	10599457.3	8 1⁄4	530.45	36.0	494.5
B-27	3358308.89	10600427.7	8 1⁄4	546.65	53.0	493.65
B-28	3356800.71	10598286.7	8 1⁄4	529.6	55.0	474.6
B-29	3358523.03	10599393	8 1⁄4	540.25	45.0	495.25
B-30	3357828.13	10598886.4	8 1⁄4	543.05	48.0	495.05
B-31	3355837.8	10599897	8 1⁄4	537.55	63.0	474.55
B-32	3357077.27	10597864.5	8 1/4	526.3	32.0	494.3
B-33 (PZ-33)	3357774.62	10598320.64	8 ¼	539.20	55.0	484.2
B-34	3358367.31	10598778.6	8 ¹ ⁄4	535.65	41.0	494.65
B-35	3357682.18	10600037.4	8 1/4	553.3	59.0	494.3
B-36	3355915.26	10598397.80	8 1/4	532.5	58.0	474.5
B-37	3358201.19	10597770.6	8 1/4	526.9	52.0	474.9
B-38	3358847.64	10598223.2	8 1/4	529.85	55.0	474.85
B-39	3358709.87	10597052.3	8 1/4	522.95	48.0	475
B-40	3359476.22	10597259.9	8 1/4	522.80	28.0	494.8
B-41 (PZ-41)	3359083.91	10599450.64	8 1/4	534.62	60.0	474.62
B-42	3358523.73	10597484.3	8 1/4	527.00	32.0	495.0
B-43 (PZ-43)	3358875.54	10600433.69	8 1/4	548.86	75.0	473.86

Table III-4.5 Coordinates and Elevations of Borings Advanced at the Site by SCS Engineers

Boring Number	Easting	Northing	Hollow Stem Auger Type	Ground Elevation (ft-msl)	Depth Drilled (ft-bgs)	Elevation of Bottom (ft-msl)
B-43 cont.	3358875.54	10600433.69	8 1⁄4	548.86	150	398.86
B-44	3354540.62	10599103.1	7 ¼	551.20	76.0	475.20
B-45	3356769.83	10601549.1	8 1⁄4	545.50	51.0	494.5
B-46	3357689.45	10601293.2	8 1/4	559.25	65.4	493.85
B-47 (PZ-47)	3356561.53	10598701.96	8 1⁄4	532.48	57.4	475.08

msl = mean sea level

b.g.s indicates depth is measured from below ground surface

nce James Lawrence Discipline License # 2-12-2021

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 6C GROUNDWATER PROTECTION PLAN

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, Texas 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021

817/571-2288

Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

Drawings

- 6C.1 Bottom Liner Details
- 6C.2 Final Cover Details

SCS Engineers TBPE Reg. # F-3407 • 6-inch-thick daily cover or 12-inch-thick intermediate cover.

Note, the sideslope geocomposite should be day-lighted a maximum distance of 375 feet from the crest of the sideslope and at each subsequent downslope drainage swale or at the landfill perimeter toe of slope, as shown on details provided on Drawing 6C.2. In cases where a drainage length of 375 feet occurs between drainage swales, the geocomposite should be day-lighted at the drainage swale immediately upslope of this location. Additionally, where the geocomposite is day-lighted, the final cover, including landfill toe of slope, will be protected with rock armor to prevent erosion resulting from stormwater seepage from the geocomposite drainage layer. Procedures for installation of the final cover system and closure of the landfill are described in Attachment 9 - Final Closure and Post-Closure Care Plan.

DRAWINGS

- Drawing 6C.1 Bottom Liner Details
- Drawing 6C.2 Final Cover Details

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 8 CLOSURE AND POST-CLOSURE COST ESTIMATES

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, Texas 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

<u>SECT</u>	<u>ION</u>	'AGE
1	INTRODUCTION	8-1-1
2	CLOSURE COST ESTIMATE	8-2-1
3	POST-CLOSURE CARE COST ESTIMATE	8-3-1
4	COST ESTIMATE ADJUSTMENTS	8-4-1

Appendices

- 8A Closure Cost Estimate Form for Municipal Solid Waste Type I Landfills
- **Closure Cost Estimate Calculations** 8B
- Post-Closure Care Cost Estimate Form for Municipal Solid Waste Type I Landfills 8C
- Post-Closure Care Cost Estimate Calculations 8D

SCS Engineers TBPE Reg. # F-3407

APPENDIX 8A

CLOSURE COST ESTIMATE FORM FOR MUNICIPAL SOLID WASTE TYPE I LANDFILLS

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 8A-1 to 8A-15

Texas Commission on Environmental Quality Closure Cost Estimate Form for Municipal Solid Waste Type I Landfills

This form is for use by applicants or site operators to provide cost estimates for closure of MSW Type I landfills to meet the requirements in 30 Texas Administrative Code (TAC) Chapter 330, Section 330.63(j) and 30 TAC Chapter 330 Subchapter L. The costs to be provided herein are cost estimates for hiring a third party to close the largest waste fill area that could potentially be open in the year to follow and those areas that have not received final cover. If you need assistance in completing this form, please contact the MSW Permits Section in the Waste Permits Division at (512) 239-2335.

Facility Name: City of Waco Landfill

MSW Permit No.: 2400

Site Operator/Permittee Name and Mailing Address: City of Waco

Total Closure Cost Estimate (2020 Dollar Amount): \$2,454,380

I. Professional Engineer's Statement, Seal, and Signature

I am a licensed professional engineer in the State of Texas. To the best of my knowledge, this Closure Cost Estimate has been completed in substantial conformance with the facility Closure Plan and, in my professional opinion, is in compliance with Title 30 of the Texas Administrative Code, Chapter 330.

Name: Ryan Kuntz, P.E. Title: Vice President

Date:

Company Name: SCS Engineers Firm Registration Number: F-3407

Professional Engineer's Seal

Professional Engineer's Signature

Facility Name: <u>City of Waco Landfill</u> Permit No: <u>2400</u> Revision No.: <u>2</u> Date: <u>February 2021</u>

D. Closure Cost Estimates Worksheet

If any item listed in this worksheet is not applicable to the subject facility, enter "NA" (Not Applicable) in the affected field.

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²
	1. E	Ingineerir	ng Costs			
1.1	Topographic Survey	Acres	21.3	\$70.00	\$1,491	(4)
1.2	Boundary Survey	Acres	502.5	\$15.00	\$7,538	(4)
1.3	Site Evaluation	Acres	502.5	\$25.00	\$12,563	(4)
1.4	Development of Plans	Lump Sum	1	\$35,000	\$35,000	(4)
1.5	Contract Administration (bidding and award)	Lump Sum	1	\$2,830	\$2,830	(4)
1.6	Closure Inspection and Testing	Acres	21.3	\$5,000	\$106,500	(4)
1.7	TPDES and other Permits	Lump Sum	1	\$5,000	\$5,000	(4)
1.8	Additional Engineering Cost Items (describe in attachments)	NA	NA	NA	NA	NA
1.9 Engii	neering Costs Subtotal					
1.9.1	Engineering Costs Subtotal	NA	NA	NA	\$170,922	NA
	2.0	onstructi	on Costs			
2.1 Mobi	lization					1
2.1.1	Mobilization of Personnel and Equipment	Lump Sum	1	\$93,716	\$93,716	(4)
2.2 Final	Cover System					
2.2.1 Side	e Slope Cover					
2.2.1a	Infiltration Layer – Compacted Clay	CY	41,233	\$2.50	\$103,083	(4)
2.2.1b	Infiltration Layer – Geosynthetic Clay Liner	SF	NA	NA	NA	NA
2.2.1c	Flexible Membrane Cover – HDPE	SF	742,200	\$0.55	\$408,210	(4)
2.2.1d	Flexible Membrane Cover – LLDPE	SF	NA	NA	NA	NA

Facility Name:City of Waco LandfillPermit No:2400

Revision No.: <u>2</u> Date: <u>February 2021</u>

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²
2.2.1e	Drainage Layer – Aggregate (Geocomposite Termination)	LF	4,695	\$32.60	\$153,057	(4)
2.2.1f	Drainage Layer – Drainage Geocomposite Material	SF	742,200	\$0.60	\$445,320	(4)
2.2.1g	Erosion Layer	СҮ	54,978	\$2.75	\$151,190	(4)
2.2.1h	Vegetation	Acres	17.04	\$1,000	\$17,040	(4)
2.2.2 Тор	Slope Cover		1			
2.2.2a	Infiltration Layer – Compacted Clay	СҮ	10,311	\$2.50	\$25,778	(4)
2.2.2b	Infiltration Layer – Geosynthetic Clay Liner	SF	NA	NA	NA	NA
2.2.2c	Flexible Membrane Cover – HDPE	SF	185,600	\$0.50	\$92,800	(4)
2.2.2d	Flexible Membrane Cover – LLDPE	SF	NA	NA	NA	NA
2.2.2e	Drainage Layer – Aggregate	СҮ	NA	NA	NA	NA
2.2.2f	Drainage Layer – Drainage Geocomposite Material	SF	185,600	\$0.55	\$102,080	(4)
2.2.2g	Erosion Layer	СҮ	13,748	\$2.75	\$37,807	(4)
2.2.2h	Vegetation	Acres	4.26	\$1,000	\$4,260	(4)
2.2.3 Cell	s for Class 1 Nonhazardous In	dustrial Wa	aste			
2.2.3a	Dike Construction	NA	NA	NA	NA	NA
2.3 Site	Grading					
2.3.1	Site Grading	Acres	21.3	\$500	\$10,650	(4)
2.4 Site	Fencing and Security					
2.4.1	Site Fencing and Security	Lump Sum	1	\$10,000	\$10,000	(4)
2.5 Land	fill Gas Monitoring and Con	trol Syste	m			
2.5.1	Gas Control Wells	NA	NA	NA	NA	NA
2.5.2	Gas Header Piping	NA	NA	NA	NA	NA
2.5.3	Gas Lateral Piping	NA	NA	NA	NA	NA
2.5.4	Flare Station	Lump Sum			NA	NA

Facility Name:City of Waco LandfillPermit No:2400

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²
2.5.5	Condensate Sumps	NA	NA	NA	NA	NA
2.5.6	Completion of LFG Monitoring System	NA	NA	NA	NA	NA
2.6 Grou	ndwater Monitoring System	า				
2.6.1	Groundwater Monitoring Well Installation	Each	NA	NA	NA	NA
2.6.2	Piezometer and Monitor Well Plugging and Abandonment	Each	NA	NA	NA	NA
2.7 Leac	hate Management					
2.7.1	Completion of Leachate Management System	NA	NA	NA	NA	NA
2.8 Storr	nwater Management					
2.8.1	Stormwater Drainage Management System	Lump Sum	1	\$313,050	\$313,050	(3)
2.9 Othe	r Cost Items					
2.9.1	Additional Construction Cost Items (describe in attachments)	NA	NA	NA	NA	NA
2.10 Cor	struction Costs Subtotal					
2.10.1	Construction Costs Subtotal	NA	NA	NA	\$1,968,041	NA
	3. Storage and	Processin	g Unit Clo	sure Cost	S	
3.1	Waste Disposal	☐ Tons ⊠ Cubic Yards	180	\$1.67	\$301	(4)
3.2	Material Removal and Disinfection	Lump Sum	1	\$3,900	\$3,900	(4)
3.3	Demolition and Disposal	Each	8	\$50	\$400	(4)
3.4	Additional Storage and Processing Unit Closure Cost Items (describe in attachments)	NA	NA	NA	NA	NA
3.5 Stora	age and Processing Unit Clo	sure Cost	s Subtota			
3.5.1	Storage and Processing Unit Closure Costs Subtotal	NA	NA	NA	\$4,601	NA

 Facility Name:
 City of Waco Landfill

 Permit No:
 2400

Revision	No.:	2	
Data			2021

Date: ___February 2021

Item No.	Item Description	Units ¹	Quantity	Unit Cost	Cost	Source of Unit Cost Estimate ²	
4. Sum	of Engineering, Constructio	n, and Sto	orage and	Processin	g Unit Clos	ure Costs	
4.1	Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals	NA	NA	NA	\$2,143,564	NA	
	5. Contingency						
5.1	Contingency (10% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	\$214,356	NA	
	6. Contract Performance Bond						
6.1	Contract Performance Bond (2% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	\$42,871	NA	
	7. Third Party Administ	ration and	d Project N	/lanageme	ent Costs		
7.1	Third Party Administration and Project Management Costs (2.5% of Sum of Engineering, Construction, and Storage and Processing Unit Closure Cost Subtotals)	NA	NA	NA	\$53,589	NA	
	8. T	otal Closu	ire Costs				
8.1	Total Closure Costs (sum of amounts in Sections 4, 5, 6, and 7)	NA	NA	NA	\$2,454,380	NA	

¹ For items marked "specify," the responsible professional engineer will enter appropriate unit of measurement

- (3) Verifiable Data based on Actual Operations; or
- (4) Other sources of cost acceptable to the executive director of the TCEQ.

² Sources of Unit Costs for Cost Estimates table may include:

⁽¹⁾ Published Cost Estimator Manuals (e.g., RS Means);

⁽²⁾ Third Party Quotes (e.g., Environmental Field Services Contractors);

APPENDIX 8B

CLOSURE COST ESTIMATE CALCULATIONS

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 8B-1 to 8B-4

CITY OF WACO LANDFILL CLOSURE COST ESTIMATE CALCULATIONS

2.2.1c Flexible Membra	ne Cover - HDP	E						
				742,200 sf				
			\$	0.55	/ sf =	\$	408,210	
2.2.1e Drainage Layer -	Aggregate (Geo	composite T	ermina	ation)				
	2,825 f	t at landfill to	oe-of-s	lope				
	<u>1,870</u> f	t for swale						
	4,095 1			c ,				
	1 913 c	I Cross-section	onal ar	ea of aggregate	2			
A garagata @	\$ 60.00	y of agglega	¢	114 800	_	¢	24.50	/ 1f
	\$ 00.00	/ cy =	¢	114,800	=	¢	24.50	/ 11
13 If geotextile	e drainage flan	@	\$	0.30	/ SI = / sf =	\$ \$	3.90 5.00	/ II / 1f
10 If geocompo	osite runout	@	\$	0.55	/ sf =	\$	5.50	/ lf
	Swale Geosynthe	tic Unit Rate		1.870	lf @	\$	14 40	/ 1f
Toe-o	of-Slope Geotext	ile Unit Rate	e:	2,825	lf @	\$	3.90	/ lf
Geosyntehtic U	Init Rate (Weigh	ted Average)):			\$	8.10	/lf
Geocomposite Termination:	4,695	lf @	\$	32.60	/ lf =	\$	153,057	
2.2.1f Drainage Layer -	Drainage Geoco	mposite Mat	erial					
(double-sided 200 mil)	-	•						
				742,200 sf		<i>•</i>		
			\$	0.60	/ st =	\$	445,320	
2.2.1g Erosion Layer								
	2.0 f	t thick						
	742,200 s	f						
	54,978 c	y for erosion	ı layer					
	Soil available o	on-site for ins	stallatio	on				
			\$	2.75	/ cy =	\$	151,190	
2.2.1h Vegetation								
-	17.04	ac @	\$	1,000	/ ac =	\$	17,040	
2.2.2 Top Slope Cover								
2.2.2a Infiltration Layer	- Compacted Cl	ay						
	1.5 f	t thick						
	185,600 s	f						
	10,311 c	y for infiltra	tion lag	yer				
	Soil available o	on-site for ins	stallatio	on				
			\$	2.50	/ cy =	\$	25,778	
2.2.2c Flexible Membra	ne Cover - HDPl	Е						
				185.600 sf				
			\$	0.50	/ sf =	\$	92,800	
2.2.2f Drainage Laver -	Drainage Geoco	mposite Ma	terial					
(single-sided 200 mil)	Drainage Geoed	inposite titu	terrar					
				185,600 sf				
			\$	0.55	/ sf =	\$	102,080	
2.2.2g Erosion Layer								
	2.0 f	t thick						
	185,600 s	f						
	13,748 c	y for erosion	ı layer					
	Soil available o	n-site for ins	stallatio	on				
			\$	2.75	/ cy =	\$	37,807	
2.2.2h Vegetation					-			
-0	4.26	ac @	\$	1,000	/ ac =	\$	4,260	
2.3 Site Grading								
Site Grading	21.3	ac @	\$	500	/ ac =	\$	10,650	

CITY OF WACO LANDFILL CLOSURE COST ESTIMATE CALCULATIONS

2.4 Site Fencing and Security

If the site were closed prior to entire permitted footprint being filled, site fencing and security for the entire landfill would already be in place. Nevertheless, to ensure adequacy of the fencing for access control, an allowance was included in this estimate.

		Allowance =	\$	10,000
2.5 Landfill Gas Monitoring and Control System (See Note 3))			
0.0 ac @	\$-	/ ac =	\$	-
2.6 Groundwater Monitoring System (See Note 4)				
2.6.1 Groundwater Monitoring Well Installation				
0.0 per well @	\$ -	/ well =	\$	-
2.6.2 Piezometer and Monitor Well Plugging and Abandonment				
0.0 per well @	\$ -	/ well =	\$	-

2.7 Leachate Management

The forced closure scenario assumes that the LCS has been installed. No expenses are projected for this item.

2.8 Stormwater Management						·	
Downchutes	800	lf @	\$	200.00	/ lf =	\$	160,000
Drainage Swales	5,250	lf @	\$	15.00	/ lf =	\$	78,750
Drainage Pond Excavation	19,800	cy @	\$	3.50	/ cy =	\$	69,300
Drainage Pond Outlet Structure					Lump Sum =	\$	5,000
		Stor	mwa	ater Manager	nent Subtotal =	\$	313,050
		(Cons	struction Co	sts Subtotal =	\$	1,968,041
3.0 Storage and Processing Unit C	losure Co	sts (Citizen's (Colle	ection Statio	<u>n)</u>		
3.1 Waste Disposal							
6.0 roll-	off contain	ners (MSW)					
30 cy p	er contain	er					
180 cy of MSW							
			\$	1.67	/ cy =	\$	301
3.2 Material Removal and Disinfection (See Note 5)							
Material							
Tires	1.0	Tire trailer @	\$	2,500	/ trailer =	\$	2,500
Metals	3.0	Containers @	\$	50	/ container =	\$	150
Cardboard/Plastics/others	2.0	Containers @	\$	50	/ container =	\$	100
White Goods	1.0	Containers @	\$	50	/ container =	\$	50
Disinfection (MSW Containers)	6.0	Containers @	\$	100	/ container =	\$	600
Disinfection (Facility)					Lump Sum =	\$	500
					Subtotal =	\$	3,900
3.3 Demolition and Disposal (See N	ote 6)						

Storage and Processing Unit Closure Costs Subtotal = \$ 4,601

50 / container = \$

400

Note 1: As discussed in Section 2 of Attachment 9, this assumes approximately 21.3 acres of waste-in-place in Sector 1. **Note 2:** Aerial coverage of topographic survey only required for filled, excavated, and stockpiled areas. **Note 3:** Based on landfill gas emissions from landfills of similar size and characteristics, it is assumed that the estimated

8.0 Containers @ \$

Note 3: Based on landfill gas emissions from landfills of similar size and characteristics, it is assumed that the estimated emissions from the landfill at this stage of development will be below regulatory thresholds that would warrant installation of a LFG control system.

Note 4: Under a forced closure scenario, it is assumed the compliance boundary will not change, and the existing groundwater monitoring system will be sufficient at closure. This also assumes that no piezometers or monitoring wells will be required to be abandoned.

Note 5: Offsite disposal costs of all materials (tires, metals, containers, white goods, etc.) are included, with exception to MSW (see Item 3.1), as well as transporation costs for offsite removal/disposal of the containers, as applicable. Both the contents and containers for metals and white goods will be disposed at a metal salvage yard, concurrently. Disinfection of the MSW containers will occur after disposal at the landfill working face (Item 3.1).

Note 6: This includes disposal of roll-off containers at a metal salvage yard, after disinfection of MSW containers and disposal of cardboard, plastic, and other recycable materials (Item 3.2). It is also assumed there will be no demolition required on-site.

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III – SITE DEVELOPMENT PLAN ATTACHMENT 9 FINAL CLOSURE AND POST-CLOSURE PLAN

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

vices Prive 710 Wices Drive 710 Dri

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

1	INTRO	DDUCTION	
2	FINA	- COVER SYSTEM	
	2.1	INTRODUCTION	9-2-1
	2.2	COVER SYSTEM DESIGN	9-2-1
	2.3	FINAL COVER QUALITY CONTROL PLAN	9-2-1
	2.4	FINAL COVER SYSTEM EVALUATION REPORT	9-2-9
3	CLOS	SURE PROCEDURES	
	3.1	SEQUENCE OF FINAL COVER PLACEMENT	9-3-1
	3.2	CLOSURE DURING ACTIVE LIFE	9-3-1
4	CLOS	URE SCHEDULE	
	4.1	FINAL CLOSURE REQUIREMENTS	9-4-1
	4.2	PROVISIONS FOR EXTENDING CLOSURE PERIOD	9-4-2
5	CLOS	SURE COST ESTIMATE	
6	POST	-CLOSURE CARE ACTIVITIES	
	6.1	MONITORING AND MAINTENANCE	9-6-1
	6.2	DECREASING POST-CLOSURE CARE PERIOD	9-6-2
	6.3	INCREASING POST-CLOSURE CARE PERIOD	9-6-2
	6.4	COMPLETION OF POST-CLOSURE CARE PERIOD	9-6-2
7	PERS	ON RESPONSIBLE FOR CONDUCTING POST-CLOSURE CARE ACTIVITIES	
8	POST	-CLOSURE LAND USE	
	8.1	INTENDED USE	9-8-1
	8.2	CONSTRAINTS OF POST-CLOSURE CONSTRUCTION	9-8-1
9	POST	-CLOSURE CARE COST ESTIMATE	

Appendices

9A

9B

Figures

Closure Plan Form Post-Closure Care Plan Form

9.1 Final Closure Schedule

SCS Engineers TBPE Reg. # F-3407 The GP or his/her qualified representative will observe all destructive and non-destructive testing of repairs and will record the number of each repair, type, date and test outcome. Repairs that pass the non-destructive tests will be taken as an indication of an adequate repair. Repairs more than 150 ft long will also be required to have a destructive test performed. Repairs that fail the initial retest will be redone and retested until a passing test results. All work and testing of repairs will be fully documented in a repair log.

2.3.8 Geocomposite and Erosion Layer Testing

When placing overlying material on the geomembrane, every effort must be made to minimize wrinkle development and stress imparted to the geomembrane. If possible, cover should be placed during the coolest weather available. Small wrinkles should be isolated and covered as quickly as possible to prevent their growth. In no case will the geomembrane be allowed to fold over on itself.

2.3.8.1 Geocomposite

A single-sided and double-sided geocomposite will be installed over the geomembrane on the landfill topslope and sideslopes, respectively. The geocomposite will conform to the material and performance properties specified by the GP, consistent with project construction plans and technical specifications. The geocomposite transmissivity shall meet or exceed a transmissivity of $3.7 \times 10^{-4} \text{ m}^2/\text{sec}$ at a gradients of 0.05 and 0.25, for topslope and sideslopes, respectively (see Attachment 12, Appendix 12A – Leachate Generation Model Narrative) and the non-woven geotextile heat-bonded to the geonet shall comply with the minimum material properties presented in the calculations provided in Attachment 12, Appendix 12B. The drainage geocomposite manufacturer (or supplier), will conduct quality control testing at the minimum frequencies and test methods presented in Table 9-2-5 and certify that all materials delivered comply with project specifications. The material certifications shall be reviewed by the GP and approved for the project prior to acceptance of any of the material.

PRODUCT	TEST	METHOD	MINIMUM FREQUENCY
Desin	Density	ASTM D1505 or D792	1 non-hotch and arows regin lat
Kesin	Melt Flow Index	ASTM D1238	I per batch and every reshi lot
	Density	ASTM D1505 or D792	
Geonet	Mass/Area	ASTM D1603	1 per 100,000 ft ² and every resin lot
	Thickness	ASTM D5199	
	Mass/Area	ASTM D5261	
	Grab Tensile Strength	ASTM D4632	
Geotextile	Trapezoidal Tear Strength	ASTM D4533	1 per 100,000 ft ² and every resin lot
	Apparent Opening Size	ASTM D4751	
	Permittivity	ASTM D4491	
Geocomposite	Transmissivity	ASTM D4716	One test per product type

Table 9-2-5.	Manufacturer's	Testina	Schedule for	Geocomposite
				••••••

Additionally, conformance testing will be performed for transmissivity (ASTM D4716) and ply adhesion (D413) by an independent third-party laboratory chosen by the GP. Conformance testing for these parameters will be performed at least once per product type and project.

2.3.8.2 Erosion Layer

The erosion layer will consist of a 24-inch-thick soil layer, with the top 6 inches capable of sustaining vegetation in accordance with §330.457(a)(3). The required thickness of the layer will be verified by settlement plates or survey methods on an established grid system with not less than one verification point per 10,000 square feet of surface area. A minimum of two verification points is required. The selected grid will be the same for both beginning and finished elevations of the erosion layer, so that minimum thickness can be calculated and verified. All elevation calculations necessary for thickness determination will be included as part of the supporting documentation in the FCSER.

Drainage aggregate where sideslope geocomposite daylights (see Attachment 6C, Drawing 6C.2) at drainage swales or landfill toe-of-slope will consist of durable particles of crushed stone, natural gravel, or lightweight aggregate free of silt, clay, or other unsuitable materials. The aggregate shall have a loss of mass due to calcium carbonate of less than 15 percent (in accordance with J&L Test Designation S-105-89 or ASTM D3042 modified to use a solution of hydrochloric acid having a pH of 5). The drainage aggregate will meet the following gradation:

Sieve Size Square Opening	Percent Passing
2 inches	100
¹ / ₂ inch	0-5

The drainage aggregate shall be tested for gradation and calcium carbonate, in accordance with ASTM C136 and J&L Test Designation S-105-89 or ASTM D3042 modified, respectively, at the supply source at a minimum of 1 test per source/3,000 cubic yards, whichever is greater. The physical characteristics of the aggregate shall be evaluated through visual inspection and laboratory classification testing before construction and visual inspection during construction. The drainage aggregate may be tested during construction at the discretion of the CQA Monitor. The test results for the drainage aggregate will be included in the FCSER.

The erosion layer and geocomposite termination drainage aggregate does not require compaction control; however, it should be stable for construction and disposal traffic. The erosion layer will be deployed in "fingers" along the geomembrane or geocomposite to control the amount of slack and minimize wrinkles and/or folds. Soil cover will generally be placed in an up-slope direction on sideslopes so that stress imparted to the geocomposite and geomembrane is minimized. Care will be exercised in placement of the erosion layer and drainage aggregate so as not to shift, wrinkle or damage any underlying geosynthetic layers, and the placement methods will be documented.

2.4 FINAL COVER SYSTEM EVALUATION REPORT

Upon completion of each area of final cover construction and evaluation, the GP will prepare and submit in triplicate the FCSER, prepared in accordance with this plan, to the TCEQ for review and approval. This report will be submitted along with a construction documentation report.

Each FCSER will include a discussion of the construction of the final cover elements, a cover placement map which shows the covered area being submitted for approval and areas covered by all previous FCSER submittals with the dates of acceptance by the TCEQ. The map should depict the site grid system, graphic scale, and north arrow. The FCSER will be signed and/or sealed by the GP performing the evaluation and a representative of the site operator.

The construction documentation will contain a narrative describing the work performed and the testing procedures performed prior to and during construction, record drawings, and results of field and laboratory testing. The FCSER will include the following:

- All field and laboratory test documentation for infiltration layer soils, including test and sample locations plotted on plan view drawings representing each 6 inch lift;
- Geomembrane manufacturer's certifications, documentation of all manufacturer's and independent testing, geomembrane seaming and repair logs, seam testing results, and a site map showing locations of panels, repairs, and tests;
- Geocomposite manufacturer's certification and testing documentation; and
- Survey documentation for the thickness of the infiltration layer and erosion layer.

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 10 SOILS AND LINER QUALITY CONTROL PLAN

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – May 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

		TABLE OF CONTENTS SCS Engineers	
SECT	ΙΟΝ	TBPE Reg. # F-3407	DACE
SECT	IUN	ALE A TELAND	<u>rage</u>
1	INTRO	DDUCTION	10-1-1
	1.1	PURPOSE	10-1-1
	1.2	DEFINITIONS	10-1-2
2	SUBG	RADE AND GENERAL FILL	10-1-1
	2.1	SUBGRADE	10-2-1
	2.2	GENERAL FILL	10-2-1
	2.3	SURVEYING AND LANDFILL MARKERS	10-2-2
	2.4	CONTROL OF SURFACE WATER	10-2-2
	2.5	EXCAVATION BELOW THE SEASONAL HIGH GROUNDWATER	
		TABLE	10-2-2
3	LOW	PERMEABILITY SOIL LINER	10-3-1
	3.1	INTRODUCTION	10-3-1
	3.2	QUALITY ASSURANCE TESTING	10-3-1
	3.3	CONSTRUCTION PROCEDURES	10-3-2
	3.4	PROCEDURES FOR ADDRESSING FAILING TESTS	10-3-4
	3.5	THICKNESS VERFICATION	10-3-6
	3.6	HYDROSTATIC CONSIDERATIONS - BALLASTING	10-3-6
4	GEOM	IEMBRANE	10-4-1
	4.1	INTRODUCTION	10-4-1
	4.2	QUALITY CONTROL AND QUALITY ASSURANCE TESTING	10-4-1
	4.3	INSTALLATION	10-4-2
	4.4	SEAM TESTING	10-4-6
	4.5	REPAIRS AND RETESTING	10-4-9
	4.6	REPAIRS	10-4-9
	4.7	GEOMEMBRANE ACCEPTANCE	10-4-11
5	DRAI	NAGE GEOCOMPOSITE	10-5-1
	5.1	INTRODUCTION	10-5-1
	5.2	DELIVERY	10-5-1
	5.3	QUALITY CONTROL TESTING	10-5-1
	5.4	INSTALLATION	10-5-2
	5.5	REPAIRS	10-5-3

TABLE OF CONTENTS (CONTINUED)

SECTION

PAGE

6	GEOT	EXTILES	10-6-1
	6.1	INTRODUCTION	10-6-1
	6.2	DELIVERY	10-6-1
	6.3	QUALITY CONTROL TESTING	10-6-1
	6.4	INSTALLATION	10-6-1
	6.5	REPAIRS	10-6-3
7	EQUI	PMENT ON GEOSYNTHETIC MATERIALS	10-7-1
8	LEAC	HATE COLLECTION PIPING	10-8-1
	8.1	INTRODUCTION	10-8-1
	8.2	DELIVERY	10-8-1
	8.3	QUALITY CONTROL TESTING	10-8-1
	8.4	INSTALLATION	10-4-2
9	DRAI	NAGE AGGREGATE	10-9-1
	9.1	MATERIALS	10-9-1
	9.2	TESTING	10-9-1
10	PROT	ECTIVE COVER	10-10-1
	10.1	MATERIALS	10-10-1
	10.2	INSTALLATION	10-10-1
	10.3	THICKNESS VERIFICATION	10-10-2
11	DOCU	JMENTATION	10-11-1
	11.1	INTRODUCTION	10-11-1
	11.2	LINER EVALUATION REPORTS	10-11-1
	11.3	LINER EVALUATION REPORT (LER) FORMAT	10-11-1
	11.4	INTERIM STATUS REPORT	10-11-2
	11.5	BALLAST EVALUATION REPORT (BER)	10-11-2
<u>Apper</u>	ndices	RYAN R. KUNTZ	
10A 10B 10C 10D	Materi Season Sampl Typica	ial Testing Schedules nal High Groundwater Table Map e Ballast Calculations al Underdrain Design SCS Engineers TBPE Reg. # F-3407	2/12/2021

SCS ENGINEERS February 2021 When the base of the cell excavation extends below the SHWT, the stability of the liner system against hydrostatic uplift is considered for two cases: (1) short-term, i.e., during construction and filling operations; and (2) long-term, i.e., after filling and into post-closure. Short-term stability against uplift of the liner system will be required by installation of an active underdrain system when excavation is below the SHWT. Underdrain systems constructed beneath the landfill cells prevent development of excessive hydrostatic uplift pressures until an adequate thickness of soils and waste ballast is achieved. Long-term stability against uplift of the liner systems is provided by the weight of the clay liner, liner protective cover, soil ballast, waste materials, and final cover system components, or collectively, ballast. Once an adequate thickness of ballast is provided, underdrain systems, if employed to provide short-term stability, are decommissioned upon approval from the TCEQ. The assumptions and calculations for the ballast evaluation and underdrain design are described in Section 11.5 (see also Appendix 10C) and Appendix 10D, respectively.

2.5.1 Control of Seepage During Construction (Short-Term Groundwater Control)

The base of the proposed excavation will be located in the Taylor Group (Wolfe City Formation), shale-marl, portions of which may be below the seasonal high groundwater table. Hydraulic conductivity test results for the geologic stratum at the Site are summarized in Attachment 5 – Geotechnical/Stability Analysis and the laboratory results of the hydraulic conductivity results are provided in Attachment 4 – Geology and Groundwater Report, Appendix III-4.F.

If groundwater seepage is observed in measureable quantities that could be detrimental to the overlying liner or softening of the subgrade, the GP will provide a summary of his observations of the seepage, the methods and procedures used to control the seepage and stabilize the foundation soils, and verification that the seepage has been controlled prior to liner placement. If groundwater seepage is observed from an area during construction that will be detrimental to the overlying liner or if excavation is below the SHWT, an underdrain system to control groundwater will be employed for that cell area, and the design of the underdrain system will be designed by a Professional Engineer licensed in the State of Texas using the calculation methodology presented in Appendix 10D. Any underdrain system installed within a respective cell will be documented in the SLER and GLER for the respective constructed cell. The underdrain design presented in Appendix 10B. This design represents the worst case scenario of groundwater seepage and can be used directly for design of an underdrain system for all future disposal cells/areas of the landfill.

As discussed in Section 2.5, when installed, an underdrain system may be decommissioned upon approval of TCEQ once an adequate thickness of ballast is achieved for long-term stability against hydrostatic uplift. A Ballast Evaluation Report (BER) will be prepared and submitted to TCEQ, as discussed in Section 11.5, when ballast or dewatering (i.e., for cells/areas with an installed underdrain system) is no longer necessary in accordance with §330.337(j).

2.5.2 Seasonal High Groundwater Table

A SHWT map has been developed based on standard standpipe piezometers and vibrating wire piezometers (VWPs) installed at the site during the subsurface and groundwater investigation (see Attachment 4, Section 6). Based on the observations presented in Attachment 4, the shallow occurrences of groundwater do not appear to be uniform across the site and may occur in isolated pockets; there exists a continuously saturated groundwater zone that occurs at deeper elevations below the base of the proposed excavation grades; and the shallow and deep occurrences of groundwater do not appear to be hydraulically connected. However, as a conservative approach to sizing underdrain components for short-term groundwater control and evaluating long-term groundwater control (waste or soil ballast), if needed, the SHWT map was developed with a culmination of high water level readings from both the shallow standpipe piezometers/VWPs and deep VWPs installed at the site during the groundwater investigation. This SHWT map, provided in Appendix 10B, depicts the measurement points, including the seasonal high groundwater table (SHWT) levels, and future excavation grades. As shown on the map, portions of the excavation grades extend below this assumed SHWT.

As noted in this SLQCP, the SHWT map will be reviewed and updated, if necessary, prior to the design of each cell based on the most recent data available at the time of design. If the groundwater elevations at monitoring points has increased since the last cell construction, the SHWT map will be revised upward to reflect those increases. An updated SHWT map will be presented in the SLER and GLER. In addition, observations of the subgrade soil characteristics and indications of groundwater seepage (if any) and potential impacts to the dewatering and ballast calculations will also be documented in the SLER and GLER.

- All test documentation for leachate collection and protective cover layers (GLER);
- For geomembrane, include manufacturer's certifications, documentation of all manufacturer's and independent testing, seam tests (non-destructive and destructive seam testing), and seaming and repair records (GLER);
- Manufacturer's certification and testing documentation for all geosynthetics (SLER/GLER); and
- Survey documentation of the thickness of the soil liner (SLER), a geomembrane drawing showing locations of panels, repairs, and destructive tests (GLER), leachate collection (GLER), and protective cover layers (GLER).

11.4 INTERIM STATUS REPORT

For any liner that will remain uncovered with waste for a period exceeding 6 months, Interim Status Reports will be prepared and submitted to the TCEQ, in accordance with 30 TAC §330.341(d). Any damaged areas will be repaired promptly. A new report shall be submitted on the new construction for all liners that need repair due to damage.

11.5 BALLAST EVALUATION REPORT (BER)

If ballast or an underdrain system are required during cell construction, the Owner/Operator will submit a Ballast Evaluation Report (BER) following confirmation that an adequate thickness of ballast has been placed or dewatering through the use of an underdrain is no longer necessary. An underdrain system may be decommissioned upon approval of TCEQ once an adequate thickness of ballast is achieved for long-term stability against hydrostatic uplift, as described in Section 2.5. If a BER is required, it will be prepared and submitted to the TCEQ, in accordance with the requirements set forth in 30 TAC §330.337(j).

The BER will incorporate the following components:

- Summary of soil stratigraphy and soil properties exposed on the bottom and sideslopes of the constructed cell.
- Adjusted seasonal high water table based on groundwater monitoring well data and other site observations.
- Calculation of ballast required, and type of ballast to be used (soil and/or waste), as described in Section 11.5.1.
- Discussion of whether an underdrain system or other dewatering system will be installed, as described in Section 2.5. In the event a dewatering system is required, the design of the dewatering system will be submitted with the SLER, GLER and BER and maintained in the Site Operating Record.

- Method of controlling uplift forces during construction (low-permeability foundation soil, dewatering, or combination).
- Monitoring of dewatering system, if required, to demonstrate that hydrostatic forces did not develop during liner construction.
- Subgrade and top-of-liner elevations, as reported in the respective SLER and confirmation of liner weight.
- Certification that ballast met the criteria established in Section 11.5.1 and in the liner quality control plan.
- The BER will be signed and sealed by an independent licensed professional engineer performing the evaluation and will include the signature of the facility operator or their authorized representative.

A BER should be submitted to the TCEQ after sufficient ballast is in place to demonstrate adequate uplift resistance against the long-term seasonal high groundwater table for a given waste phase. If the TCEQ provides no response within 14 days of the date of receipt of the BER, the Owner may discontinue the operation of the underdrain system, in the event a dewatering system is installed.

11.5.1 Ballast Calculations (Long-Term Groundwater Controls)

Calculations will be prepared that demonstrate that the weight of the liner system, including ballast, is sufficient to offset any unbalanced upward or inward hydrostatic forces on the liner by a factor of 1.2 (for soil ballast) or 1.5 (for waste ballast). Sample ballasting calculations are provided in Appendix 10C. The unit weight values used in the sample calculations are assumptions only. Field-verified values will be incorporated into the BER.

11.5.2 Soil as Ballast

If soil is to be used as ballast, it will be placed after liner system construction. Soil ballast may include the protective cover, leachate collection system, additional soil over the liner or waste, and intermediate and final cover soils. For soil ballast placed during cell construction, the SLER should include a statement that the soil ballast, or a component of the ballast (i.e. protective cover or additional soil over protective cover) will be documented in the GLER, which will include the following field confirmations and calculations:

- Determine the density of the soil used as ballast. An estimate of soil density will be developed using geotechnical properties developed during soil construction.
- Initial and final survey of the area to receive soil as ballast, which should be accomplished at the same frequency required in this SLQCP for the liner. The top of clay survey or geomembrane survey may be used as the initial survey for soil ballast.

• Calculate the thickness of soil utilized as ballast (from survey), to determine the resulting confining pressure from the soil ballast. The calculated confining pressure for soil ballast will be reduced by a factor-of-safety of 1.2 in accordance with 30 TAC §330.337(b)(1).

11.5.3 Waste as Ballast - 40,000 Pound or Greater Compactor

If waste is a component used for ballast, the approval of the GLER must first be received from TCEQ prior to ballasting. The BER must include (in addition to the items described in Section 11.4) the following documentation and calculations:

- Certification from the landfill operator that the wheeled compactor used to compact the waste weighs no less than 40,000 pounds, and that the compactor was utilized during the entire period of placing the waste ballast.
- Certification from the landfill operator that the type of waste placed in the lower 5 feet was free of brush and large bulky items, which would damage the underlying system or which cannot be compacted to the required density.
- Initial and final survey of the area to receive waste as ballast to determine the thickness of waste. The survey of the top of protective cover can be used as the initial survey.
- Calculation of the confining pressure of the waste by assuming a density of 1,200 pounds per cubic yard in accordance with 30 TAC §330.337(h)(2). The confining pressure for the waste ballast will be reduced by a factor-of-safety of 1.5.

11.5.4 Waste as Ballast - Less Than 40,000 Pound Compactor

If a less than 40,000 pound compactor is used, calculations to determine the in-place density of waste will be performed. These calculations will include the following:

- Initial survey of the area to receive waste as ballast. The survey of the top of the protective cover may be used for this initial survey.
- Weight of waste placed, based on actual measurements of truck weights at the scalehouse.
- Survey of the top of waste to document that the thickness calculated in the GLER has been placed.
- Calculate the volume of waste used as ballast from the survey. The actual density of the placed waste will be calculated by dividing the previously recorded weight by the volume of waste determined by the survey. The calculated density will be used in the ballast calculations. In the event the calculated density is greater than 1,200 pounds per cubic yard, a density of 1,200 pounds per cubic yard will be used for the ballast calculations. As previously stated, the confining pressure for the waste ballast will be reduced by a factor of safety of 1.5 in accordance with 30 TAC §330.337(h)(2).

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III SITE DEVELOPMENT PLAN -ATTACHMENT 12 LEACHATE AND CONTAMINATED WATER MANAGEMENT PLAN

RYAN R. KUNTZ

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 0 – April 2020 Revision 1 – October 2020 Revision 2 – December 2020 Revision 3 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

PAGE

1	PURP	POSE AND SCOPE	12-1-1
2	LEAC	HATE AND CONTAMINATED WATER GENERATION	12-2-1
	2.1	GENERAL PROCESS	
	2.2	LEACHATE GENERATION	12-2-1
	2.3	STORMWATER MANAGEMENT	12-2-1
3	LEAC	HATE COLLECTION SYSTEM	12-3-1
	3.1	SYSTEM LAYOUT	12-3-1
	3.2	LEACHATE DRAINAGE LAYER	12-3-1
	3.3	LEACHATE COLLECTION PIPING	12-3-1
	3.4	LCS DURABILITY AND LONG-TERM PERFORMANCE	12-3-2
	3.5	LEACHATE COLLECTION SUMPS AND PUMPS	12-3-2
	3.6	DRAINAGE AGGREGATE	12-3-3
4	LEAC	HATE AND CONTAMINATED WATER STORAGE	12-4-1
5	LEAC	HATE AND CONTAMINATED WATER DISPOSAL AND RECIRCULATION	

Drawings

- 12.1 East Disposal Area Leachate Collection System Layout Plan
- 12.2 West Disposal Area Leachate Collection System Layout Plan
- 12.3 Bottom Liner Details
- 12.4 Leachate Collection System Details

Appendices

- 12A Leachate Generation Model
- 12B Leachate Collection System Design Calculations
- 12C Containment Berm and Diversion Berm Calculations
- 12D HDPE Pipe Corrosion Durability Literature

SCS Engineers TBPE Reg. # F-3407
APPENDIX 12A

LEACHATE GENERATION MODEL (HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) OUTPUT FILES)

- Leachate Generation Model Narrative
- Climatological Data
- Help Model Summary Sheets
- HELP Output Files (Without Leachate Recirculation)
- HELP Output Files (With Leachate Recirculation)

LEACHATE GENERATION MODEL NARRATIVE

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 MCLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III SITE DEVELOPMENT PLAN ATTACHMENT 12, APPENDIX A LEACHATE GENERATION MODEL NARRATIVE

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – July 2019 Revision 1 – December 2020 Revision 2 – February 2021 SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION

1

PAGE

LEAC	CHATE GENERATION MODEL	
1.1	OBJECTIVE	5
1.2	LEACHATE COLLECTION SYSTEM	5
1.3	METHOD OF ANALYSIS	5
1.4	MODEL SETUP	6
1.5		
1.6	HELP MODEL RESULTS	
1.7	REFERENCES	

SCS Engineers TBPE Reg. # F-3407 conditions, the hydraulic conductivity was assumed to be 1.0×10^{-3} cm/s (i.e., HELP default) for the top 100 ft of waste. For the remaining lower thickness of waste, where the waste has been compacted and in-place for longer periods, 5.0×10^{-4} cm/s was used as hydraulic conductivity

Lower hydraulic conductivity of landfilled MSW is attributed to increased overburden stress and increased finer particles resulting from degradation. Reddy et. al. (2011) reported two orders of magnitude reduction in hydraulic conductivity of synthetic MSW with degradation. In another study, hydraulic conductivities of 1 x 10^{-4} cm/s to 1 x 10^{-7} cm/s are reported for MSW for uncompacted MSW and MSW at 90 feet depth, respectively (Reddy et. al., 2009).

1.4.3.5 Daily and Intermediate Cover

The daily cover for active condition consists of a 6-inch-thick layer of soil and the intermediate cover for the interim condition has an additional 6-inch layer of soil for a total thickness of 12 inches. The daily and intermediate cover were assumed to be clayey soil, with a hydraulic conductivity of 1.7×10^{-5} cm/s. Default soil characteristics were used for the daily and intermediate cover soils (HELP default texture 15).

1.4.3.6 Final Cover

Final cover on the landfill topslope and sideslopes from top to bottom will consist of a 24-inch thick erosion layer, a geocomposite drainage layer, a 40-mil geomembrane, and an 18-inch thick infiltration layer (compacted clay). The geocomposite will be installed to drain infiltrating water from the final cover. Both topslope and sideslope cover systems were evaluated in the HELP The minimum manufactured thickness of the geocomposite will be 200-mil modeling. (approximately 0.20 inches). To evaluate the hydraulic performance of the geocomposite layer, the hydraulic conductivity value used in the HELP model was adjusted until the maximum depth of stormwater percolating through the erosion layer to the geocomposite (for peak daily flow) was less than or approximately equal to the thickness of the geocomposite (i.e., less than 0.20 inches). In this manner water flow above the geomembrane was confined in the geocomposite layer only. Based on this evaluation the minimum allowable transmissivity was calculated based on the hydraulic conductivity to be 3.7×10^{-4} m²/sec (i.e., T_{min} = k x t x 2.54 cm/in x 0.0001 m²/cm², where T_{min} = Transmissivity [minimum, m²/sec], k = hydraulic conductivity [cm/sec], and t = Geocomposite Thickness [inches]) at gradients of 0.05 and 0.25 for topslope and sideslopes, respectively. For the sideslope geocomposite analysis, the average annual drainage collected from the topslope over the modeling period was input into the sideslope model, as subsurface inflow into the geocomposite drainage layer. This approach models the conveyance of water flow within the geocomposite associated with the topslope and sideslope flow combined (i.e., water collected from the topslope flows into the sideslope geocomposite). The result of the sideslope cover system analysis demonstrates that the maximum depth of stormwater within the geocomposite is limited to the thickness of the geocomposite (i.e., 0.20 inches) for a maximum drainage length of 375 feet. As a result, the final cover design includes daylighting the geocomposite at drainage swales and the landfill perimeter top of slope located no greater than 375 feet apart, as shown in Attachment 6C, Drawing 6C.2.

For the purposes of this model, it has been assumed that the erosion layer will consist of a clayey soil with a hydraulic conductivity of 1.7×10^{-5} cm/s, consistent with soil modeled from daily and

intermediate cover described in Section 1.4.3.5. The geomembrane was modeled for good installation quality, 4 defect per acre, and a pinhole density of 1 hole/acre (Berger and Schroeder, 2013). The infiltration layer will consist of compacted soil with a hydraulic conductivity of 1.0×10^{-5} cm/s or less. Default soil characteristics from the HELP model were selected to represent the layers within the final cover system.

1.5 LEACHATE RECIRCULATION

As previously mentioned, the active and interim conditions, described in Section 1.4.1 of this appendix, were also modeled for leachate recirculation. For both scenarios, the weather data described in Section 1.4.2 was used in the model. These conditions are considered representative of the worst case below-grade and above-grade conditions for which leachate generation and resulting leachate head would be affected by leachate recirculation.

A synthetic storm duration of 10 years was modeled for the active condition. A synthetic storm duration of 50 years was modeled for the interim conditions, which is greater than the estimated site life of the landfill (note, see Part III narrative, Section 2.2 for estimated site life of the landfill). Since the maximum time leachate recirculation can take place is less than 50 years, and in accordance with standard engineering practice, this duration is appropriate for analysis of the impacts on the leachate collection system associated with leachate recirculation. Furthermore, this duration conservatively approximates the longest time period for which the below-grade and above-grade waste disposal will likely occur for a given sector of the landfill.

Incorporating the above assumptions, for both the active and interim conditions, the percentage of leachate recirculated was increased within the HELP model until the calculated leachate head on the liner was less than or equal to the compressed thickness of the geocomposite. The model results for leachate recirculation are summarized in the HELP Model Summary Sheet (with leachate recirculation) provided in this appendix.

The allowable leachate recirculation volume is provided in the table below. Based on the results of the leachate recirculation demonstration, the allowable leachate recirculation volume for below-grade and above-grade waste disposal is represented by the active, 10-foot waste condition and interim, 170-foot waste condition, respectively. As shown, during periods of leachate recirculation, leachate head on the liner is maintained within the compressed thickness of the geocomposite. However, it should be noted that in all cases, actual leachate recirculation will also be controlled by the ability of the landfill operator to meet the 30-centimeter maximum leachate head over the bottom liner criteria, as verified by monitoring of the leachate levels at the sumps, as described in Attachment 12, Section 3.5.

Fill Condition	Average Annual Recirculation (cf/yr/ac) ¹	rerage Annual Recirculation (cf/yr/ac) ¹ Peak Leachate Head (in)	
Below-Grade	80,200	0.22	599,900
Above-Grade	26,690	0.19	199,640

ALLOWABLE LEACHATE RECIRCULATION

¹ Referenced from the HELP Model Output (with leachate recirculation) provided in this appendix.

² The allowable recirculation values pertain to areas draining to a common sump.

1.6 HELP MODEL RESULTS

The HELP model results are presented in the attached HELP Model Summary Sheets for both "without leachate recirculation" and "with leachate recirculation." Additionally, the HELP model output files are also provided in this appendix. As presented in the HELP model output, the depth of leachate over the bottom liner is predicted to be confined to the geocomposite lateral drainage layer, which is well below the 30 centimeter regulatory requirement, whether during periods of with or without leachate recirculation.

1.7 REFERENCES

Berger, K. and Schroeder, P.R. "The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for HELP-D Version 3.95 D", Version 3.95 D, Institute of Soil Science, University of Hamburg, Germany, 2013.

Reddy, K., Hettiarachchi, H., Gangathulasi, J., and Bogner, J.E. "Geotechnical Properties of Fresh Municipal Solid Waste at Orchard Hills Landfill, USA", Waste Management, 29, pp. 952-959, 2009.

Reddy, K., Hettiarachchi, H., Gangathulasi, J., and Bogner, J.E. "Geotechnical Properties of Municipal Solid Waste at Different Phases of Biodegradation", Waste Management, 31, pp. 2275-2286, 2011.

HELP OUTPUT FILES (WITHOUT LEACHATE RECIRCULATION)

SCS Engineers TBPE Reg. # F-3407 Inclusive of pages 12A-19 to 12A-58(11)

* * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	
****	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	*****	
**					**	
**					**	
**	HYDROLOGIC	EVALUATION (OF LANDFILL I	PERFORMANCE	**	
**			(10 -		**	
* *	HELP Versic	on 3.95 D	(10 Au	ıgust 2012)	* *	
**		develo	oped at	_	* *	
** Insti	tute of Soil	Science, Ur	niversity of	Hamburg, Ger	rmany **	
* *		base	ed on		* *	
* *	US HELP MOD	DEL VERSION 3	3.07 (1 NOVI	EMBER 1997)	* *	
* *	DEVELOF	PED BY ENVIRO	ONMENTAL LABO	DRATORY	* *	
* *	USAE	WATERWAYS EX	KPERIMENT STA	ATION	* *	
* *	FOR USEPA RI	SK REDUCTION	I ENGINEERING	G LABORATORY	* *	
* *					* *	
* *					* *	
* * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	
TIME: 13.04	DATE: 10.	2.2021				
PRECIPITATION D. TEMPERATURE DAT SOLAR RADIATION EVAPOTRANSPIRAT SOIL AND DESIGN OUTPUT DATA FIL ************************************	ATA FILE: A FILE: DATA FILE: ION DATA F. DATA FILE E: **********************************	M:\Proj\V M:\Proj\V 1: M:\Proj\V 1: M:\Proj\V M:\Proj\V M:\Proj\V Case 5 - Fin	Vaco\16216088 Vaco\16216088 Vaco\16216088 Vaco\16216088 Vaco\16216088 Vaco\16216088 Vaco\16216088 Naco\16216088	3\\Waco-50. 3\\Waco-50. 3\\Waco-50. 3\\Waco-Fir 3\\Case 5_2 3\\Case 5_2 3\\Case 5_2 ************************************	.d4 .d7 .d13 nal Cover.d11 2(2-3-21).d10 2.out	
WEATHER DATA SOURCES						
NOTE: JAN/JUL 2.02	PRECIPITATI COEFFICIE NORMAL ME FEB/AUG 2.36	CON DATA WAS CNTS FOR W CAN MONTHLY H MAR/SEP 2.68	SYNTHETICALI VACO PRECIPITATION APR/OCT 3.42	LY GENERATED TEXAS N (INCHES) MAY/NOV 4.51	USING JUN/DEC 3.06	

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING

COEFFICIENTS FOR WACO TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
46.20	50.50	58.10	67.10	74.20	81.90
85.90	85.60	79.20	68.80	57.00	49.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR WACO TEXAS AND STATION LATITUDE = 31.37 DEGREES

layer data 1

VALID FOR 50 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 15 THICKNESS = 24.00 INCHES POROSITY = 0.4750 VOL/VOL FIELD CAPACITY 0.3780 VOL/VOL = = WILTING POINT 0.2650 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3789 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1700E-04 CM/SEC 0.3789 VOL/VOL NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0

	 		-
THICKNESS	=	0.20	INCHES
POROSITY	=	0.850	0 VOL/VOL
FIELD CAPACITY	=	0.010	0 VOL/VOL

WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0318	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	7.250	CM/SEC
SLOPE	=	25.00	PERCENT
DRAINAGE LENGTH	=	375.0	FEET
SUBSURFACE INFLOW	=	2.59	INCHES/YR

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXT	URE	NUMBER	36	
THICKNESS	=	0.04	1	INCHES
EFFECTIVE SAT. HYD. CONDUCT]. =	0.40	000E	L-12 CM/SEC
FML PINHOLE DENSITY	=	1.00)	HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00)	HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOI)	

LAYER 4

TYPE 3 - BARRIER SOIL LINER

	MATERIAL	TEXTURE	NUMBER 0	
THICKNESS		=	18.00	INCHES
POROSITY		=	0.4750	VOL/VOL
FIELD CAPACITY	Ζ	=	0.3780	VOL/VOL
WILTING POINT		=	0.2650	VOL/VOL
INITIAL SOIL W	VATER CONT	CENT =	0.4750	VOL/VOL
EFFECTIVE SAT.	. HYD. CON	NDUCT.=	0.1000	E-04 CM/SEC

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 15

	MATRICIAN	TEXIONE	NOMDER IS	
THICKNESS		=	12.00	INCHES
POROSITY		=	0.4750	VOL/VOL
FIELD CAPACITY		=	0.3780	VOL/VOL
WILTING POINT		=	0.2650	VOL/VOL
INITIAL SOIL W	ATER CONT	'ENT =	0.3780	VOL/VOL
EFFECTIVE SAT.	HYD. CON	IDUCT.=	0.1700	E-04 CM/SEC

LAYER 6

TYPE 1 - VERTICAL PERCOLATION LAYER

	MATERIAL	TEXTURE	NUMBER 18	
THICKNESS		=	1200.00	INCHES
POROSITY		=	0.6710	VOL/VOL
FIELD CAPACITY	7	=	0.2920	VOL/VOL

WILTING	POINT	[=	0.0770 VOL/VOL
INITIAL	SOIL	WATER	CONTENT	=	0.2920 VOL/VOL
EFFECTIV	7E SAT	C. HYD.	CONDUCT	. =	0.1000E-02 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER

	MATERIAL	TEXTURE	NUMBER 0	
THICKNESS		=	840.00	INCHES
POROSITY		=	0.6710	VOL/VOL
FIELD CAPACITY	Z	=	0.2920	VOL/VOL
WILTING POINT		=	0.0770	VOL/VOL
INITIAL SOIL V	WATER CONT	TENT =	0.2920	VOL/VOL
EFFECTIVE SAT	. HYD. CON	NDUCT.=	0.5000	E-03 CM/SEC

LAYER 8

TYPE 1 - VERTICAL	PERCOL	ATION L	AYER
MATERIAL TEXTU	JRE NUM	BER 15	
THICKNESS	=	24.00	INCHES
POROSITY	=	0.4750	VOL/VOL
FIELD CAPACITY	=	0.3780	VOL/VOL
WILTING POINT	=	0.2650	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.3780	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.	=	0.1700	E-04 CM/SEC

LAYER 9

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0

THICKNESS	=	0.19	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	3.000	CM/SEC
SLOPE	=	2.00	PERCENT
DRAINAGE LENGTH	=	340.0	FEET

LAYER 10

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS	=	0.06 INCHES
EFFECTIVE SAT. HYD.	CONDUCT.=	0.2000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE

FML INSTALLATION DEFECTS=4.00HOLES/ACREFML PLACEMENT QUALITY=3 - GOOD

LAYER 11

TYPE 3 - BARRIER SOIL LINER

M	IATERIAL	TEXTURE	NUMBER	16		
THICKNESS		=	24.0	0	INCHES	
POROSITY		=	0.4	270	VOL/VOL	
FIELD CAPACITY		=	0.4	180	VOL/VOL	
WILTING POINT		=	0.3	670	VOL/VOL	
INITIAL SOIL WA	TER CONT	TENT =	0.4	270	VOL/VOL	
EFFECTIVE SAT.	HYD. CON	NDUCT.=	0.1	0001	E-06 CM/SE	EC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 50 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 375. FEET.

SCS RUNOFF CURVE NUMBER	=	87.10	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	9.093	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	11.400	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	9.072	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	6.360	INCHES
SOIL EVAPORATION ZONE DEPTH	=	24.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	637.187	INCHES
TOTAL INITIAL WATER	=	637.187	INCHES
TOTAL SUBSURFACE INFLOW	=	2.58	INCHES/YEAR

EVAPOTRANSPIRATION DATA 1

VALID FOR 50 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

WACO	TEXAS		
STATION LATITUDE		= 31	.37 DEGREES
MAXIMUM LEAF AREA	INDEX	= 3	.50
START OF GROWING S	SEASON (JULIA	N DATE) =	55
END OF GROWING SEA	ASON (JULIAN	DATE) = 1	336
EVAPORATIVE ZONE I	DEPTH	= 24	.0 INCHES
AVERAGE ANNUAL WIN	ND SPEED	= 11	.30 MPH
AVERAGE 1ST QUARTH	ER RELATIVE H	UMIDITY = 69	.0 %
AVERAGE 2ND QUARTH	ER RELATIVE H	UMIDITY = 69	.0 %
AVERAGE 3RD QUARTH	ER RELATIVE H	UMIDITY = 62	.0 %
AVERAGE 4TH QUARTI	SR RELATIVE H	UMIDI'I'Y = 69	.0 %
***************************************	************	**************	* * * * * * * * * * * * * * * * * * * *
FINAL WATER	STORAGE AT E	ND OF YEAR 5	0
LAYER	(INCHES)	(VOL/VOL)	
1	9.2719	0.3863	
2	0.0020	0.0100	
3	0.0000	0.0000	
4	8.5500	0.4750	
5	4.5360	0.3780	
6	350.4000	0.2920	
7	245.2800	0.2920	
8	9.0720	0.3780	
9	0.0019	0.0100	
10	0.0000	0.0000	
11	10.2480	0.4270	
TOTAL WATER IN LAYERS	637.362		
SNOW WATER	0.000		
INTERCEPTION WATER	0.000		
TOTAL FINAL WATER	637.362		
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

*****************	* * * * * * * * * * * * * * * *	*****
PEAK DAILY VALUES FOR YEARS	1 THROUGH 5	0
	(INCHES)	(CU. FT.)
PRECIPITATION	5.66	20545.799
RUNOFF	3.123	11337.2002
DRAINAGE COLLECTED FROM LAYER 2	0.60530	2197.24170
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000003	0.00941
AVERAGE HEAD ON TOP OF LAYER 3	0.031	
MAXIMUM HEAD ON TOP OF LAYER 3	0.196	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 9	0.00000	0.00631
PERCOLATION/LEAKAGE THROUGH LAYER 11	0.000000	0.00002
AVERAGE HEAD ON TOP OF LAYER 10	0.000	
MAXIMUM HEAD ON TOP OF LAYER 10	0.014	
LOCATION OF MAXIMUM HEAD IN LAYER 9 (DISTANCE FROM DRAIN)	0.0 FEET	
SNOW WATER	2.59	9392.4756
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	561
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	650
*** Maximum heads are computed using I	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

AVERAGE MONTH	LY VALUES I	N INCHES	FOR YEARS	1 THR	.OUGH 50	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DE
PRECIPITATION						
TOTALS	2.09 1.61	2.55 2.02	2.88 2.85	2.82 3.09	4.24 2.28	3.28 2.20
STD. DEVIATIONS	1.16 1.80	1.39 1.54	1.58 1.81	1.71 2.07	2.31 1.35	2.14 1.33
RUNOFF						
TOTALS	0.083 0.195	0.179 0.111	0.255 0.242	0.195 0.502	0.430 0.156	0.31 0.16
STD. DEVIATIONS	0.126 0.416	0.281 0.250	0.328 0.394	0.307 0.866	0.601 0.263	0.52 0.28
OTENTIAL EVAPOTRANS	PIRATION					
TOTALS	2.825 10.150	3.214 9.273	4.948 7.323	6.416 5.080	7.903 3.489	8.84 2.83
STD. DEVIATIONS	0.232 0.308	0.248 0.315	0.382 0.386	0.363 0.253	0.319 0.233	0.37 0.23
ACTUAL EVAPOTRANSPIR	ATION					
TOTALS	1.395 1.788	1.688 1.662	2.419 2.305	4.119 1.585	3.632 1.322	3.21 1.39
STD. DEVIATIONS	0.451 1.714	0.517 1.043	0.764 1.274	1.000 0.776	1.630 0.577	1.53 0.44
SUBSURFACE INFLOW IN	TO LAYER 2					
TOTALS	0.2200 0.2200	0.2004 0.2200	0.2200	0.2129 0.2200	0.2200 0.2129	0.21
ATERAL DRAINAGE COL	LECTED FROM	LAYER 2	!			
TOTALS	0.5775	0.7407 0.2198	0.8270 0.2139	0.4102 0.2989	0.2212 0.4406	0.23 0.71

M:\Projects\Waco\16216088.00 New LF\T-140 Part III & IV App\Rev 3\Unmarked\Att 12\HELP, Closed Case, Rev 0.docx

y of Waco y of Waco Landfill			A Leachate	ttachment Generati	12, Appe on Model	ndix 12 Narrativ
STD. DEVIATIONS	0.4176 0.0445	0.6342 0.0000	0.6823 0.0087	0.3907 0.2828	0.0102 0.4987	0.1064 0.5997
PERCOLATION/LEAKAGE T	HROUGH LAYEI	r 4				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.000
LATERAL DRAINAGE COLL	ECTED FROM 1	layer 9				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.000
PERCOLATION/LEAKAGE T	HROUGH LAYEI	R 11				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.000
AVERAGES	OF MONTHLY	AVERAGED	DAILY HE	ADS (INCH	ES)	
DAILY AVERAGE HEAD ON	TOP OF LAY	er 3				
AVERAGES	0.0008 0.0003	0.0011 0.0003	0.0011 0.0003	0.0006 0.0004	0.0003 0.0006	0.000
STD. DEVIATIONS	0.0006 0.0001	0.0010 0.0000	0.0010 0.0000	0.0006 0.0004	0.0000 0.0007	0.0002
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 10				
AVERAGES	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 50

	INCI	HES	5	CU. FEET	PERCENT
PRECIPITATION	31.90	(5.608)	115783.9	100.00
RUNOFF	2.833	(1.2622)	10282.85	8.881
POTENTIAL EVAPOTRANSPIRATION	72.306	(1.0943)	262470.91	
ACTUAL EVAPOTRANSPIRATION	26.528	(3.6899)	96296.37	83.169
SUBSURFACE INFLOW INTO LAYER 2	2.59170			9407.881	8.12538
LATERAL DRAINAGE COLLECTED FROM LAYER 2	5.12125	(1.35736)	18590.146	16.05589
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00003	(0.00001)	0.115	0.00010
AVERAGE HEAD ON TOP OF LAYER 3	0.001	(0.000)		
LATERAL DRAINAGE COLLECTED FROM LAYER 9	0.00003	(0.00001)	0.106	0.00009
PERCOLATION/LEAKAGE THROUGH LAYER 11	0.00000	(0.00000)	0.009	0.00001
AVERAGE HEAD ON TOP OF LAYER 10	0.000	(0.000)		
CHANGE IN WATER STORAGE	0.004	(1.2891)	12.89	0.011
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * *	*******	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *