City of Waco Landfill
 McLennan and Limestone Counties
 TCEQ Pemit No. MSW-2400
 Parts III and IV, Volume 3 of 4

Administratively Complete

Prepared for
City of Waco

501 Schroeder Drive
Waco, Texas 76710

Prepared by:

City of Waco Landfill

McLennan and Limestone Counties
TCEQ Permit No. MSW -2400

MSW Landfill Permit Application, Parts III and IV
Table of Contents

VOLUME 2 OF 4
TCEQ Core Data Form (TCEQ-10400)(Update)

SCS Engineers
TBPE Reg. \# F-3407

TCEQ Part I Form for New Permit for a MSW Facility (TCEQ-0650)
Checklist for MSW Permits, Registrations, and Amendments (Parts III/IV only)
Part III
Attachment 1 Site Layout Plans
Attachment 2 Fill Cross Sections
Attachment 3 Landfill Completion Plan
Attachment 4 Geology and Groundwater Report

VOLUME 3 OF 4

Attachment 5
Attachment 6A
Attachment 6B
Attachment 6C

VOLUME 4 OF 4

Attachment 7	Groundwater Sampling and Analysis Plan
Attachment 8	Closure and Post-Closure Care Cost Estimates
Attachment 9	Final Closure and Post-Closure Care Plan
Attachment 10	Soil and Liner Quality Control Plan
Attachment 11	Landfill Gas Management Plan
Attachment 12	Leachate and Contaminated Water Management Plan Part IV
Site Operating Plan	

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400
 McLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 5 GEOTECHNICAL/STABILITY ANALYSES

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive Waco, TX 76710

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407
Dallas/Fort Worth Office
1901 Central Drive, Suite 550
Bedford, Texas 76021
817/571-2288

Revision 0 - April 2020
SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION 5-1-1
2 GEOTECHNICAL TESTING 5-2-1
2.1 GENERAL 5-2-1
2.2 SOIL CLASSIFICATION TESTS 5-2-2
2.3 CONSOLIDATED UNDRAINED (CU) TESTS 5-2-2
2.4 UNCONFINED COMPRESSION TESTS 5-2-2
2.5 HYDRAULIC CONDUCTIVITY TESTS 5-2-2
2.6 TEST CORRELATIONS AND SUMMARIES 5-2-2
3 GEOTECHNICAL CONSTRUCTION MATERIALS 5-3-1
3.1 MATERIAL REQUIREMENTS 5-3-1
3.2 SUITABILITY OF SOILS FOR GEOTECHNICAL CONSTRUCTION 5-3-1
4 SLOPE AND FOUNDATION STABILITY 5-4-1
4.1 GENERAL 5-4-1
4.2 SECTIONS SELECTED FOR ANALYSIS 5-4-2
4.3 INPUT PARAMETERS AND ASSUMPTIONS 5-4-2
4.4 RESULTS OF ANALYSES - EXCAVATION, INTERIM, AND FINAL CONDITIONS 5-4-6
4.5 VENEER SLOPE ANALYSES OF LINER SYSTEM 5-4-7
4.6 VENEER SLOPE ANALYSES OF FINAL COVER SYSTEM 5-4-8
4.7 ANCHOR TRENCH DESIGN 5-4-8
5 SETTLEMENT ANALYSES 5-5-1
5.1 GENERAL 5-5-1
5.2 FOUNDATION SETTLEMENT 5-5-1
5.3 FINAL COVER SETTLEMENT. 5-5-2
6 CONCLUSIONS AND RECOMMENDATIONS 5-6-1
7 REFERENCES 5-7-1

Drawings

Drawing 5.1 Stability Sections Location Map 1
Drawing 5.2 Stability Sections Location Map 2
Drawing 5.3 East Disposal Area Stability Cross Section A-AA’
Drawing 5.4 East Disposal Area Stability Cross Section B-BB'
Drawing 5.5 East Disposal Area Stability Cross Section C-CC’
Drawing 5.6 East Disposal Area Stability Cross Section D-DD’ Drawing 5.7 West Disposal Area Stability Cross Section E-EE’

SCS Engineers
TBPE Reg. \# F-3407

Appendices

5A Slope Stability Analyses
5B Veneer Stability Analyses
5C Settlement Analyses

SCS Engineers
TBPE Reg. \# F-3407

1 INTRODUCTION

This Attachment 5 - Geotechnical/Stability Analyses has been prepared as a part of the permit application for the City of Waco Landfill (landfill), McLennan and Limestone Counties, Texas, consistent with 30 TAC Chapter 330 requirements. This report addresses the geotechnical aspects of the landfill, including evaluation of the geotechnical properties of the subsurface soils and a discussion with conclusions about the suitability of the soils and strata for the uses proposed within this application.

This attachment also includes stability and other geotechnical-related landfill analyses including the following:

- Excavation Slope Stability;
- Foundation and Waste Slope Stability (Interim Conditions);
- Foundation and Waste Slope Stability (Final Conditions);
- Liner System Veneer Stability (during construction and operation);
- Final Cover System Veneer Stability (after closure);
- Anchor Trench (Liner System) Design; and
- Settlement Analyses.

2 GEOTECHNICAL TESTING

2.1 GENERAL

Geotechnical testing was done on soil samples obtained during the site subsurface exploration conducted from October 2018 to January 2019 (see Attachment 4). During this site exploration, 42 borings were advanced between 28 to 80 feet in depth. Soil samples were collected during auger advancement utilizing thick walled Shelby tubes, two-foot split spoons, or five-foot continuous split barrels. Select soil samples from each stratum were used for geotechnical testing. The geotechnical tests were performed to evaluate physical and engineering properties of the different soil strata in accordance with 30 TAC §330.63(e)(5). Two additional borings were drilled in December 2019 (B-9 and B-43) to depths of 135 feet and 150 ft , respectively. The site exploration is discussed in detail in Attachment 4, Section 5. In Attachment 5, for the evaluation of the tests results, soil samples were grouped as West Disposal Area Samples, East Disposal Area Samples, and Other Samples (i.e., samples from borings outside the respective waste footprints).

Test parameters, the ASTM Test Methods, and the location within this report where test results are presented are shown in Table 5-2-1. The test results are summarized on Tables 5-2-2 to 5-2-6 for reference and individual testing results are shown in Attachment 4, Appendix 4.F.

Table 5-2-1. Laboratory Test Parameters

Test Parameter	Test Results	ASTM Test Method
Standard Proctor	Attachment 4 Appendix 4.F	D 698A
Sieve Analysis (Passing No. 200)	Boring Logs Appendix 4.D	D 1140
Atterberg Limits (Liquid and Plastic Limit, Plasticity Index)	Boring Logs Appendix 4.D	D 4318
Moisture Content \& Unit Weight	Boring Logs Appendix 4.D	D 2216
Hydraulic Conductivity (Remolded to 95\% Standard Proctor)	Table 5-2-6 Appendix 4.F	USACE EM 1110-2-
1906, Appendix VII		
Consolidated Undrained Triaxial Test	Table 5-2-5 Appendix 4.F	D 4767
Unconfined Compression Test Table 5-2-7 Appendix 4.F	D 2166	

2.2 SOIL CLASSIFICATION TESTS

Soil classification tests consisting of Atterberg limits, sieve analysis (percent passing the number 200 sieve), unit weight, and moisture content were performed on selected samples recovered from the boreholes. These test results were used to classify the soils according to the USCS and evaluate physical properties of the soils.

2.3 CONSOLIDATED UNDRAINED (CU) TESTS

Consolidated undrained (CU) triaxial tests with pore-pressure measurements were performed on selected undisturbed soil specimens to determine the drained shear strength parameters of soil samples. After the specimens reached 100% consolidation, they were axially loaded to failure under undrained conditions. Pore pressure readings were taken during loading to estimate effective stresses (i.e., drained shear strength parameters). CU test results with pore pressure readings, and resulting estimates of effective shear strength are presented in Attachment 4.

2.4 UNCONFINED COMPRESSION TESTS

Unconfined compression tests were performed on selected undisturbed soil specimens to determine the undrained shear strength parameters. During these tests, an axial load is applied to each specimen with zero confining pressure. Undrained shear strength test results are presented in Attachment 4.

2.5 HYDRAULIC CONDUCTIVITY TESTS

Flexible wall, falling head hydraulic conductivity tests were performed on recompacted soil specimens in the laboratory. Since surficial soils at the site will be used for liner construction, bucket samples taken at four locations from 10 to 12 feet depth were used for these tests. Standard Proctor curves for these samples were obtained. These samples were compacted at 95\% Standard Proctor and Optimum Water Content for remolded hydraulic conductivity testing. These results were obtained to confirm the hydraulic conductivity that might be expected from on-site soils when used as landfill liner material.

Field hydraulic conductivity (permeability) slug tests were also performed on selected piezometers as discussed in Attachment 4, Section 6.3. These results were obtained to assist in evaluation of the in-situ permeability of the site lithology.

2.6 TEST CORRELATIONS AND SUMMARIES

2.6.1 General

The Attachment 4 description of site geology defines the site lithology as "shale-marl;" which are bulk rock materials composed of clay. For the purposes of using clearly defined engineering terms in this Attachment, the engineering term "clay" is used to refer to those layers that are referred to as "shale-marl" in Attachment 4. As shown on the logs and geologic cross sections in Attachment

4, Appendix 4B and 4C, the landfill excavation will typically encounter predominantly high plasticity clays (CH).

As described in Attachment 4, site lithology as determined by the drilling exploration program is quite homogenous both horizontally and vertically. Site lithology has been divided into surficial alluvial (Unit I), upper "weathered" calcareous shale-marl (Unit II) and lower "unweathered" calcareous shale-marl (Unit III) horizons based on field observations. Uppermost Unit 1 soil horizon generally ranges from zero to three feet in thickness. This thin uppermost soil layer (Unit I) will mostly be used as topsoil and, due to its thickness and similarity to other layers, will not be used for landfill development to the extent of the lower layers (Units II and III).

2.6.2 Laboratory Test Results

The geotechnical laboratory test results are summarized in the sections below for the West Disposal Area, East Disposal Area, and areas outside the waste footprints. The boring location map and geotechnical laboratory reports are presented in Attachment 4. Laboratory test results including Liquid Limit (LL), Plasticity Index (PI), percent fines, percent sand, percent gravel, water content, dry unit weight, unconfined compressive strength and Unified Soil Classification System (UCSC) classification are presented in Tables 5-2-2 to 5-2-4.

Results of the CU tests are presented in Attachment 4 (Appendix 4.F) and summarized in Table 5-2-5. Results of the hydraulic conductivity tests of the samples remolded at 95\% Standard Proctor are presented in Attachment 4 and summarized in Table 5-2-6.

Table 5-2-2. Summary of Geotechnical Material Property Test Results - West Disposal Area

| $\begin{array}{c}\text { Boring } \\ \text { Number }\end{array}$ | $\begin{array}{c}\text { Sample } \\ \text { Depth } \\ \text { (ft) }\end{array}$ | $\begin{array}{c}\text { Soil } \\ \text { Layer }\end{array}$ | LL | PI $^{(1)}$ | $\begin{array}{c}\text { Fines } \\ (\%)\end{array}$ | $\begin{array}{c}\text { Sand } \\ (\%)\end{array}$ | $\begin{array}{c}\text { Gravel } \\ (\%)\end{array}$ | $\begin{array}{c}\text { Water } \\ \text { Content } \\ (\%)\end{array}$ | $\begin{array}{c}\text { Dry Unit } \\ \text { Weight } \\ \text { (pcf) }\end{array}$ | $\begin{array}{c}\text { qua } \\ \text { Strength } \\ \text { (tsf) }\end{array}$ | USCS (4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$]$

${ }^{(1)} \mathrm{PI}=\mathrm{LL}$ - PL
${ }^{(2)}$ See Table 5-2-5 for CU test results.

Table 5-2-3. Summary of Geotechnical Material Property Test Results - East Disposal Area

Boring Number	Sample Depth	Soil Layer	LL	$\mathrm{PI}^{(1)}$	Fines (\%)	Sand (\%)	Gravel (\%)	Water Content (\%)	Dry Unit Weight (pcf)	Strength (tsf)	USCS ${ }^{(4)}$
B-15	55-57	Unit III	57	37	91	7	2	11	116	1.61	CH
B-14	15-17	Unit II	58	35	65	30	5	19	104		CH
	35-37	Unit III	58	39	94	5	1	15			CH
B-18	10-12	Unit II	66	45	92	7	1	19	105	4.26	CH
	45-47	Unit III	57	38	90	10	0	13	109	3.59	CH
B-45	25-27	Unit II	66	46	90	8	2	21	107	6.21	CH
	40-42	Unit III	58	38	92	8	0	15			CH
B-21	15-17	Unit II	69	44	97	3	0	19			CH
	35-37	Unit III	57	39	94	6	0	15	108	10.49	CH
	40-42	Unit III	61	40	88	8	4	14			CH
B-19 ${ }^{(2)}$	10-12	Unit II	83	59	92						CH
	50-52	Unit II	63	44	91	7	2	14	117		CH
	70-72	Unit III	57	38	95	5	0	15			CH
B-46	45-47	Unit III	62	41	94	6	0	13	110		CH
B-20	45-47	Unit II	59	36	95	5	0	13	116	18.68	CH
	55-57	Unit III	58	37	96	3	1	13	118	16.82	CH
B-13	35-37	Unit II	66	43	94	6	0	20			CH
	45-47	Unit III	51	33	95	5	0	15			CH
B-27	25-27	Unit II	68	47	87	10	3	18	108		CH
	45-47	Unit III	61	40	97	3	0	15	118		CH
B-43	10-12	Unit II	60	40	95	5	0	18	111	7.12	CH
	25-27	Unit II	61	42	94	5	1	16	7.12		CH
	45-47	Unit III	63	40	95	5	0	16			CH
B-8	10-12	Unit II	67	50	85						CH
	40-42	Unit II	58	38	92	8	0	16	106	4.02	CH
	50-52	Unit III	58	38	97	2	1	14	116		CH

${ }^{(1)}$ PI $=\mathrm{LL}-\mathrm{PL}$
${ }^{(2)}$ See Table 5-2-5 for CU test results.

Table 5-2-3. (cont.) Summary of Geotechnical Material Property Test Results - East Disposal Area

Boring Number	Sample Depth (ft)	Soil Layer	LL	$\mathrm{PI}^{(1)}$	Fines (\%)	Sand (\%)	Gravel (\%)	Water Content (\%)	Dry Unit Weight (pcf)	q_{u} Strength (tsf)	USCS ${ }^{(4)}$
B-35	45-47	Unit III	54	33	75	17	8	13	109		CH
B-30	15-17	Unit II	61	41	90	6	4	18			CH
	30-32	Unit II	62	41	94	6	0	18			CH
B-29	25-27	Unit II	60	39	95	4	1	16	113		CH
	35-37	Unit III	51	34	90	10	0	11	114		CH
B-34	10-12	Unit II	57	38	82	17	1	14			CH
	20-22	Unit II	63	43	95	5	0	16	111		CH
B-22	30-32	Unit II	74	47	84	8	1	20			CH
	45-47	Unit III	64	39	92	7	8	17			CH
B-10	10-12	Unit II	65	41	90	7	3	19			CH
	25-27	Unit II	54	33	94	6	0	15	108		CH
	40-42	Unit III	59	39	92	7	1	14			CH

${ }^{(1)}$ PI $=$ LL - PL
Table 5-2-4. Summary of Geotechnical Material Property Test Results - Other Borings

Boring Number	Sample Depth (ft)	Soil Layer	LL	PI ${ }^{(1)}$	Fines (\%)	Sand (\%)	Gravel (\%)	Water Content (\%)	Dry Unit Weight (pcf)	Strength (tsf)	USCS ${ }^{(4)}$
B-11	20-22	Unit II	75	49	89	10	1	21	95		CH
	45-47	Unit III	55	33	86	14	0	13	120		CH
B-36	15-17	Unit II	56	35	91	8	1	18			CH
	30-32	Unit III	64	38	93	7	0	17	115		CH

${ }^{(1)} \mathrm{PI}=\mathrm{LL}-\mathrm{PL}$

Table 5-2-5. Summary of Consolidated Undrained (CU) Triaxial Test Results

Area	Boring Number	Sample Depth (ft)	Sampled Layer	CU test Results	
		C-19	$50-51$	Unit II	7.4
East Disposal Area	Bsi)	$\phi^{\prime}\left({ }^{\circ}\right)$			
West Disposal Area	B-17	$25-26$	Unit II	1.6	24.0
West Disposal Area	B-31	$15-16$	Unit II	5.5	25.9
West Disposal Area	B-24	$45-46$	Unit III	10.0	34.0
West Disposal Area	B-44	$50-51.5$	Unit III	1.7	19.2

Table 5-2-6. Summary of Hydraulic Conductivity Tests - Remolded Samples

Area	Boring Number	Sample Depth (ft)	Sampled Layer	Hydraulic Conductivity (Remolded) $(\mathrm{cm} / \mathrm{s})$
West Disposal Area	B-16	$10-12$	Unit II	1.94×10^{-8}
West Disposal Area	B-23	$10-12$	Unit II	2.69×10^{-8}
East Disposal Area	B-8	$10-12$	Unit II	2.23×10^{-8}
East Disposal Area	B-19	$10-12$	Unit II	2.05×10^{-8}

2.6.3 Material Properties

The geotechnical laboratory test results presented in the previous section are compiled in Table 5-2-7. Test results obtained from areas outside the waste limits are not included in this table since these areas will mostly be undisturbed during landfill construction. The landfill excavation will typically encounter predominantly high plasticity clays (CH) in the West Disposal Area and East Disposal Area, where all samples taken were classified as high plasticity clays (CH).

Site lithology has been divided into upper "weathered" (Unit II) and lower "unweathered" (Unit III) horizons based on field observations, and the engineering properties of these units confirmed by geotechnical laboratory testing are generally very similar (see Table 5-2-7). In addition to this similarity, engineering properties of soil samples (weathered and/or unweathered) from the West Disposal Area are very similar to the samples from the East Disposal Area. Therefore, for slope stability analyses and settlement analyses, foundation soils are modeled as one uniform layer for the landfill (including the West and East Disposal Areas). The engineering properties of this soil layer are estimated by the weighted average of all test results.

The results of the drained shear strength tests performed on the undisturbed samples are presented in Attachment 4. As seen in Table 5-2-5, similar shear strength properties were obtained for Units 2 and 3. As discussed in Section 4, in addition to these test results, empirical relationships are also used to calculate the shear strength properties.

Table 5-2-6 shows the remolded hydraulic conductivities obtained through laboratory testing. The values for Unit II range between 1.9×10^{-8} and $2.7 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$ (four test results). Unit II hydraulic conductivity reported for the West Disposal Area and East Disposal Area were very similar, with little variability. The results as shown in Table 5-2-6 confirms that on-site soils will be suitable for use as liner materials. Although hydraulic conductivity is low enough for liner construction, gravel chimney drains will likely be needed to promote leachate flow through the protective cover. These gravel chimney drains are included in the design (see Attachment 12 - Leachate and Contaminated Water Management Plan).

Table 5-2-7. Typical Properties of On-Site Materials

Laboratory Test	West Disposal Area				East Disposal Area				Foundation Soils ${ }^{(3)}$
	Weathered Clay Unit II		Unweathered Clay Unit III		Weathered Clay Unit II		Unweathered Clay Unit III		
	Average Value	Number of Tests							
Liquid Limit	68	18	65	10	63	21	58	17	63
Plastic Limit	22	18	22	10	21	21	20	17	21
Plasticity Index	46	18	43	10	42	21	38	17	42
Moisture Content	19	16	16	10	17	19	14	17	16.5
\% Passing No. 200 Sieve	88	16	93	8	90	21	92	17	91
Dry Unit Weight (pcf)	105.6	13	113.5	4	110	14	112	10	109.4
Unit Weight ${ }^{(2)}$ (pcf)	125.6	N/A	131.2	N/A	128.7	N/A	127.7	N/A	127.7
CU Test - Cohesion (c) (psi)	3.55	2	5.9	2	7.4	1	N/A	N/A	5.4
CU Test - Friction Angle (ϕ) (${ }^{\circ}$)	26.0	2	26.6	2	24	1	N/A	N/A	25.9
$\begin{gathered} \mathrm{q}_{\mathrm{u}} \text { Test - Unconfined Compressive } \\ \text { Strength (psf) }{ }^{(4)} \\ \hline \end{gathered}$	10.9	6	14.4	2	8.1	5	9.8	5	10,530
Hydraulic Conductivity (remolded) (cm/s)	2.31×10^{-8}	2	N/A	N/A	2.14×10^{-8}	2	N/A	N/A	2.23×10^{-8}

Notes:

1. West Disposal Area and East Disposal Area averages are arithmetic.
2. Unit Weight is calculated using the dry unit weight, water content (WC), and the following formula: $\gamma=\gamma_{d} X(1+W C)$
3. For foundation soil properties, weighted averages of test results are compiled in this column.
4. Average of 10 lowest q_{u} values.

3 GEOTECHNICAL CONSTRUCTION MATERIALS

Based on the properties observed during field and laboratory testing, the following evaluation of the applicability of the various strata for geotechnical construction was developed.

3.1 MATERIAL REQUIREMENTS

Construction of the landfill will require clay or clayey soils which can be compacted to have an in-place hydraulic conductivity of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$ or less for the soil liner portion of the composite liner and $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ or less for the infiltration layer portion of the final cover system. Soil will also be required for protective cover over the liner, operational cover (daily and intermediate), the erosion layer component of the final cover, berm construction, and other miscellaneous general fill. Granular material (i.e., crushed stone) will be used for the leachate collection sumps and filter packing (chimney drains) around leachate collection lines. Typical material requirements are summarized in Table 5-3-1.

3.2 SUITABILITY OF SOILS FOR GEOTECHNICAL CONSTRUCTION

3.2.1 Soil Liner and Infiltration Layer

Material used to construct the soil liner and infiltration layer components of the liner and final cover systems, respectively are required to have a minimum Atterberg liquid limit of 30 and plasticity index of 15 (see Table 5-3-1). While the same material can be used to construct either layer, they have different hydraulic conductivity requirements. The bottom and sides of the landfill excavation will require a 2 -foot compacted clay liner as the bottom component of a composite liner system. Adequate clay soils will be available from proposed landfill, basin or perimeter channel excavations, or on-site and select off-site borrow sources to provide material for the constructed liners. Based on Atterberg limits values and hydraulic conductivity testing performed as part of the geotechnical investigation, on-site clays and clayey soils are expected to have remolded hydraulic conductivity of less than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$ when compacted to 95 percent of the standard Proctor densities. Soil liner construction and testing procedures are outlined in the SLQCP (Attachment 10).

3.2.2 Protective Cover Material

Protective soil cover will be placed over the leachate collection system (LCS) drainage layer on the bottom and sideslope liners. The protective cover is required to protect the liner and LCS from filling and construction activity. On-site soils are expected to have a hydraulic conductivity of less than $1 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ when loosely compacted due to their clay-like nature and low hydraulic conductivities. Therefore, provisions have been made to extend leachate collection drainage media through the protective cover along the leachate collection lines and over the sump. This extension of the drainage media through the protective cover (referred to as "chimney drains") will allow transmission of leachate to the LCS, thereby limiting the development of hydraulic head above the protective cover layer.

3.2.3 Final Cover Erosion Layer

The erosion layer should consist of a minimum 24 inches of earthen material, of which the top six inches is capable of sustaining plant growth. The existing site topsoil should be acceptable for this application. Amendment of the erosion layer with fertilizers, organic materials, or pH stabilizers may be required, as determined by evaluation during cover construction and vegetation establishment.

3.2.4 Operational Cover Material

Operational cover includes daily cover and intermediate cover. The materials excavated from the site may be used for operational cover. As listed in Table 5-3-1, operational cover is not restricted by physical properties except for maximum particle size. Any of the materials encountered in the excavation may be used for operational cover provided they are broken up to meet the maximum particle size criterion and were not previously mixed with waste materials.

3.2.5 Soil Fill Materials and Perimeter Embankment Construction

Soil fill will be required for subgrade preparation (refer to Attachment 10 for liner subgrade requirements), embankments, haul roads, and other miscellaneous general fill. Perimeter embankments (cell exterior berms) will be constructed along portions of the landfill perimeter as a component of cell construction. Material availability, compaction characteristics, and long-term maintenance requirements should be considered when evaluating the excavated soils for use as soil fill. All materials encountered in the subsurface investigations were suitable for use as soil fill. Soils typically should be segregated by classifications during excavation where relatively large variations exist, and Proctor moisture-density tests performed for the individual soil types for demonstration of level of compaction of the individual soil types during placement.

Embankments shall have sideslopes no steeper than 3 horizontal to 1 vertical ($3 \mathrm{H}: 1 \mathrm{~V}$). Unreinforced fill slopes not exceeding $2 \mathrm{H}: 1 \mathrm{~V}$ also are acceptable, provided diversion berms are provided at the top of the slope to minimize surface water flowing down the $2 \mathrm{H}: 1 \mathrm{~V}$ slopes. A sufficient amount of soil is available from the landfill excavations to construct the perimeter embankment and other features that require soil fill material.

The embankments will be constructed of on-site soils classified as clay, silty clay, or sandy clay, free of organic and other objectionable materials. The soil fill will be spread in maximum 12-inch thick, loose, horizontal lifts and compacted to a minimum of 95 percent of maximum standard Proctor dry density, within 3 percentage points below to 5 percentage points above the standard Proctor optimum moisture content. Alternative level of compaction and moisture content ranges will require demonstration prior to construction that the proposed alternative provides adequate structural support.

Table 5-3-1. Typical Soil Characteristics for Landfill Construction

Landfill Component	Soil Description	Classification	LL	PI	\%-200	Hydraulic Conductivity $\mathrm{cm} / \mathrm{sec}$
Compacted Clay - Liner Infiltration Layer - Final Cover Protective Cover	clayey sand, sandy clay, or clay clayey sand, sandy clay, or clay sand or sand with silt and clay	$\begin{array}{\|l\|} \hline \text { SC, CL, CH } \\ \text { SC, CL, CH } \\ \text { SP-SM, SP, SP-SC, SW, SM } \\ \text { or SM-SC } \end{array}$	30 min 30 min (3)	15 min 15 min (3)	30 min 30 min (3)	$\begin{gathered} \hline 1 \times 10^{-7} \max \\ 1 \times 10^{-5} \max \\ 1 \times 10^{-4} \text { max }^{(1)} \end{gathered}$
Erosion Layer for Final Cover	clayey sand, sandy clay, or clay	SC, CL, SM	Suitable to support plant growth			
Operational Cover (Daily Cover, Intermediate Cover)	sand, clayey sand, sandy clay, or clay	SP, SC, CL, CH			(2)	(2)
General Fill: Perimeter Berm, Subgrade Preparation	clayey sand, sandy clay, or clay	SC, CL, CH	To be du constru	ecified g tion ${ }^{(3)}$	15 min	No requirement
Notes						
1. If material does not meet the hydraulic conductivity criteria, the LCS drainage aggregate will extend through the protective cover at selected locations (i.e., chimney drains) and will be exposed adequately for transmission of leachate to the collection piping. 2. Material is not restricted by physical or engineering properties except for maximum particle size of approximately 4 inches. 3. On-site soils generally have high liquid and plastic limits. As such, if any maximum values are set, these will be set prior to construction to conform to on-site soils.						

A minimum of one standard Proctor test (ASTM D 698) will be performed on each representative soil used as fill material. Each lift will receive a minimum of four passes with a heavy tamping roller unless adequate compaction can be demonstrated with fewer passes. If a smooth-drummed or rubber-tired compactor is used, the lifts will be scarified between successive lifts. Moisturedensity field testing and full-time monitoring during construction will be provided by qualified geotechnical personnel. The outside face of all embankment construction will be vegetated to minimize erosion and desiccation.

3.2.6 Landfill Cell Excavations

The landfill base grades will be excavated in a manner that will achieve reasonable segregation of liner quality material (clays) from the topsoil and any soils that are not liner-quality materials (if encountered). Materials will be stockpiled separately as necessary, according to construction material properties outlined above, and visual observation during excavation. Excavation and hauling of clay soils is expected to be achieved with scraper equipment or bulldozer and dump truck.

Permanent excavation slopes (i.e., slopes that will be lined) will be rough graded to no steeper than $3 \mathrm{H}: 1 \mathrm{~V}$. Slopes to receive liner will be graded to $3 \mathrm{H}: 1 \mathrm{~V}$ or flatter based on the final construction plans.

4 SLOPE AND FOUNDATION STABILITY

4.1 GENERAL

The following section presents the results of the global slope stability analyses for the landfill. Analyses were also performed to calculate the overall stability of the proposed interim and final slopes of the landfill. Specifically, the following slope stability analyses are performed in this section:
i. excavation stability during cell construction;
ii. stability of waste slopes and foundation soils during filling - interim conditions (circular mode);
iii. stability of liner system during filling - interim conditions (block mode);
iv. stability of waste slopes and foundation soils after closure - final conditions (circular mode);
v. stability of liner system after closure - final conditions (block mode);
vi. veneer stability of liner system during cell construction; and
vii. veneer stability of final cover system - final conditions.

As presented in Attachment 4 (Section 3.1.2), the proposed landfill is not located within a seismic impact zone as defined by 30 TAC 330.557. Therefore, only static stability analyses were performed in this section.

Interim and final conditions stability analyses include both circular and block failure modes, which provide factors of safety against failure of the constructed landfill, landfilled municipal solid waste (MSW), the critical interface of the liner system, and the underlying foundation soils. Stability of the proposed liner and final cover systems in veneer mode are evaluated in Sections 4.5 and 4.6. Anchor trench design is discussed in Section 4.7.

Slope stability analyses were performed using the computer program PCSTABL5M (FHWA, 1995). This program uses two-dimensional limit equilibrium methods to calculate a factor of safety (FS) against shear failure for slope sections analyzed. The PCSTABL5M program uses an automatic search routine to generate multiple shear failure surfaces for both circular failures and block or wedge-type failure modes until the surface with the lowest FS-value (i.e., critical failure surface) is found. The analytical methods used for the circular and sliding block failure modes in the slope stability analysis are the Modified Bishop and Modified Janbu methods, respectively. Circular failure search mode was used to evaluate excavation stability, and stability under interim and final conditions, while sliding block failure mode was used to analyze stability of the critical interfaces in the bottom liner system.

A minimum acceptable FS of 1.5 was assumed for global static slope stability analyses under final conditions. A minimum acceptable FS of 1.3 was assumed for a temporary, static interim waste slope stability analyses. The recommended minimum FS for the conditions analyzed are consistent with the recommendations from the Corps of Engineers "Design and Construction of Levees" manual (EM 1110-2-1913) and EPA's "Technical Guidance Manual for Design of Solid Waste Disposal Facilities."

Cross sections selected for analyses, input parameters and assumptions, and results of the analyses are presented in the following sections. PCSTABL5M output files of the excavation stability, stability under interim and final conditions are presented in Appendix 5A.

Stability of the proposed liner system during construction is evaluated in the veneer mode. The limit equilibrium method of Koerner and Soong (1998) is used to analyze the stability of the liner system on the 3 Horizontal:1 Vertical (3H:1V) sideslopes. Using Koerner and Soong (1998) method, the minimum required interface friction angle that can achieve a target factor of safety is estimated. The result is presented in Appendix 5B.

Stability of the proposed final cover system is also evaluated using the same method used for liner system stability in veneer mode. The result is also presented in Appendix 5B.

4.2 SECTIONS SELECTED FOR ANALYSIS

Slope stability analyses were performed for selected cross-sections of the landfill. The locations of these cross sections were selected based on review of the proposed excavation grades and the final grading plan. A critical slope section is considered to have a maximum waste height, a maximum exterior slope angle, and a shallow perimeter berm. All slope sections except the interim slopes are virtually buttressed by the excavation and the landfill perimeter, including a perimeter berm of various heights.

Please refer to Drawings 5.1 and 5.2 at the end of this attachment (prior to the Appendices) for plan views of the landfill showing where the various sections were cut. Drawings 5.3 through 5.7 show the various sections. Profiles of the sections can also be seen on the model outputs provided in Appendix 5A.

One cross section was selected for excavation stability analysis close to the north corner of the East Disposal Area (Section AA'). This cross section was selected as the most critical because the excavation cut is deepest in this area (including West Disposal Area and East Disposal Area).

Interim fill condition was analyzed using one cross section (Section BB') with the tallest potential interim waste slope that would be constructed from an intercell berm to the maximum waste height with a slope inclination of $3 \mathrm{H}: 1 \mathrm{~V}$.

Slope stability analyses under final conditions (waste stability, foundation soils stability, and liner stability) were performed for three slopes at final grade (Sections $\mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$, and EE '). The analyses were performed on cross-sections assuming that the landfill has reached its maximum height.

4.3 INPUT PARAMETERS AND ASSUMPTIONS

Table 5-2-7 compiles the results of the geotechnical tests performed on the foundation soils. In addition to the CU tests and unconfined compression strength tests, long-term and short-term shear strength parameters for foundation soils are also estimated using (i) the available empirical relationships in the literature and/or (ii) shear strength properties reported in the literature for CH type soils. These estimations are presented in Appendix 5A.

4.3.1 Material Properties for Stability Analysis - Excavation Slope

Table 5-4-1 summarizes the unit weight and shear strength properties of foundation soils used for excavation stability. Please refer to Appendix 5A for more information on these assumptions. Cell excavation is a short-term condition, therefore undrained soil strength properties were used for this analysis.

Table 5-4-1. Summary of Geotechnical Shear Strength Properties - Excavation Slope

Material	γ $\mathbf{(p c f)}$	\mathbf{c} $(\mathbf{p s f})$	ϕ $\left({ }^{\circ}\right)$
Foundation Soils (undrained)	128	4,000	0

4.3.2 Material Properties for Stability Analysis - Interim and Final Conditions

Table 5-4-2 summarizes the unit weight and shear strength properties used for interim waste slope and final slope conditions. Foundation soil shear strength properties under drained conditions are used for these analyses as summarized in Table 5-4-2. Based on calculations presented in Appendix 5A, a friction angle of 25 degrees is used for foundation soils. To be conservative, cohesion component of soil shear strength is assumed to be zero.

The total unit weight for MSW was assumed to be 60 pcf based on MSW with typical compaction and soil amount reported by Zekkos et al. (2006). Bray et al. (2009) reports that a friction angle of 33 degrees is commonly used in the literature. The same study reports cohesion of 313 psf and 36 degrees for MSW. Based on these values reported in the literature, shear strength parameters reported in Table 5-4-2 are conservatively used for MSW. When assigning these values to the modeled MSW layer, saturated waste within the waste stream is uncommon and is not considered in the analysis.

Most of the landfill footprint is located within the weathered clay layer, in which very high SPT values were recorded as shown in Attachment 4. Clayey soil available on-site will be used for construction of the final cover and liner systems. Unit weight and shear strength properties were based on values reported in the literature.

Table 5-4-2. Summary of Geotechnical Strength Properties - Interim and Final Conditions

Material	γ $\mathbf{(p c f)}$	\mathbf{c} $\mathbf{(p c f)}$	ϕ $\left({ }^{\circ}\right)$
Foundation Soils (drained) ${ }^{(1)}$	128	0	25
Municipal Solid Waste	60	200	32
Soil Fill/Soil Liner/Final Cover Soils	120	200	20

${ }^{(1)}$ Cohesion $=0$ (to be conservative). See Appendix 5A for more information.

4.3.3 Additional Slope Stability Analyses Assumptions

The slope stability analyses were performed based on the following assumptions:

- The analyses assume that either a block-type failure surface occurs along the weakest interface of geosynthetic/geosynthetic or soil/geosynthetic components of the liner system or, if a failure occurs within the waste mass or the foundation soil layer, that a circular failure surface occurs.
- Liner systems proposed for the cell side slopes and cell base are different (from bottom to top):
o Side slopes: 2-foot thick compacted clay liner, textured HDPE geomembrane, doublesided geocomposite, and 2-foot thick protective soil.
o Cell base: 2-foot thick compacted clay liner, smooth HDPE geomembrane, single-sided geocomposite, and 2 -foot thick protective soil.

The proposed side slope liner system will be extended from the toe of slope to 5 feet onto the cell floor.

The representative interface friction angles for the interfaces of the proposed liner systems are summarized in Table 5-4-3, which are based on GRI Report \#30, "Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces" by G. R. Koerner and D. Narejo (2005). Consistent with the recommendations of Stark and Choi (2004), residual shear strengths are assigned to the sideslopes and peak shear strength are assigned to the base of the liner system to satisfy a FS greater than 1.5.

According to Table 5-4-3, the critical interface friction angle (residual) for the sideslope is the textured HDPE geomembrane and double-sided geocomposite interface with an interface friction angle of 15 degrees. For the landfill base, where the peak interface friction angle is used, the lowest reported interface friction angle is 11 degrees (smooth HDPE geomembrane and saturated compacted clay liner or single-sided (SS) geocomposite interface).

Based on Table 5-4-3, interface friction angles of 11 degrees and 15 degrees were used in the block-type stability analyses for the cell floor and side slope liner systems, respectively.

To be conservative, no adhesion value was used in the analysis; however, adhesion is typically considered to determine the effective shear strength of the critical interface.

Table 5-4-3. Summary of Liner Interface Properties

Interface	Peak Friction Angle $\phi_{\text {peak }}\left({ }^{\circ}\right)$	Residual Friction Angle $\phi_{\text {residual }}\left({ }^{\circ}\right)$
Smooth HDPE GM /Compacted Clay Liner (Saturated)	11	11
Smooth HDPE GM /SS Geocomposite (Geonet)	$\mathbf{1 1}$	9
NW GT/Cohesive Soil	30	21
Textured HDPE GM /Compacted Clay Liner (Saturated)	18	16
Textured HDPE GM /DS Geocomposite	26	$\mathbf{1 5}$
Geocomposite/ Protective Cover	18	18

1. Polyethylene; GM: geomembrane; SS: single-sided; DS: double-sided; NW GT: non-woven geotextile.
2. Interface friction angle for each interface considered is based on 2005 GRI Report \#30, "Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces" by G. R. Koerner and D. Narejo (2005).
3. Textured HDPE liner will be used on all sideslopes as well as 5 feet from the toe of the slope.

- The compacted clay liner interface with the HDPE liner was assumed to be in a saturated condition for conservativeness, since the cell excavation extends below the seasonal high groundwater table (see Attachment 10 - Soil and Liner Quality Control Plan for more information).
- According to Federal guidance on the application of Subtitle D regulations, an acceptable factor of safety for long-term global static slope stability analyses is 1.5 . For the temporary short-term slope stability condition such as the interim waste slope, a factor of safety of 1.3 is considered acceptable. An acceptable factor of safety for a static veneer stability analysis is 1.5 for the final cover system and 1.3 for the liner system (i.e., interim conditions).
- The ground water table was assumed 1 foot below lowest subgrade elevations for these stability analyses. It is assumed that either the ground water controls will be installed at the time of construction or that sufficient ballast will be in place prior to hydrostatic uplift on the liner in accordance with Attachment 10.

4.4 RESULTS OF ANALYSES - EXCAVATION, INTERIM, AND FINAL CONDITIONS

The results of the global static slope stability analyses for the various scenarios considered are presented in Tables 5-4-4 to 5-4-6. The locations of the critical failure surfaces for each crosssection are presented in Appendix 5A, in which detailed computer graphical printouts and output files for each model run are presented.

The calculated FS for excavation stability analysis and interim conditions are greater than the minimum acceptable value of 1.3.

The calculated FS for the global static slope stability analysis (final conditions) are greater than the minimum acceptable value of 1.5 . The most critical section of all those considered, Section CC' yielded a FS of 1.64 under block-type failure mode, with the failure surface located within the bottom liner system.

Interface friction angles used in the block-type failure mode are considered typical and conservative for the existing interfaces. Should there be a different interface present due to selection of materials not considered before, the global slope stability analyses should be reevaluated during construction in order to validate the requirements of the FS values.

Under circular failure surface mode (final conditions), the calculated factors of safety are greater than 2.5 with a failure surface located within the waste mass. From the results of the analysis, it is anticipated that the block-type failure mode is more critical than the circular failure mode.

The results of the stability analyses indicate that the proposed excavation, interim waste fill slopes and the final waste fill slopes are stable under the conditions analyzed.

Table 5-4-4. Stability Analyses Results - Excavation Stability

Cross Section	Output File Name	Slope Stability Analysis	Calculated Factor of Safety	Target Factor of Safety
AA^{\prime}	Waco XS A- Undrained	Circular	3.94	1.30

Table 5-4-5. Stability Analyses Results - Interim Conditions

Cross Section	Output File Name	Slope Stability Analysis	Calculated Factor of Safety	Target Factor of Safety
BB^{\prime}	Waco XS B - Circular	Circular	2.11	1.30
BB^{\prime}	Waco XS B- Block	Block	1.40	1.30

Table 5-4-6. Stability Analyses Results - Final Conditions

Cross Section	Output File Name	Slope Stability Analysis	Calculated Factor of Safety	Target Factor of Safety
CC^{\prime}	Waco XS C- Circular	Circular	2.73	1.50
CC^{\prime}	Waco XS C- Block	Block	1.64	1.50
DD^{\prime}	Waco XS - Circular	Circular	2.76	1.50
DD^{\prime}	Waco Xs D- Block	Block	1.69	1.50
EE^{\prime}	Waco XS E- Circular	Circular	2.88	1.50
EE^{\prime}	Waco XS E- Block	Block	1.82	1.50

4.5 VENEER SLOPE ANALYSES OF LINER SYSTEM

Veneer stability of the liner system during construction was evaluated using a veneer stability model that evaluates the seepage forces within the liner system using a set of equations and method developed by Koerner and Soong (1998). Both static and seepage forces were considered in the veneer stability analysis, using basic equations as shown on the calculation spreadsheets in Appendix 5B. Interface friction angle that provides the target factor of safety is estimated. Target FS of 1.3 for slope stability was used for this interim condition during construction individual cells.

The veneer slope stability analysis was performed based on the following assumptions:

- Maximum liner system slope was assumed to be at a $3 \mathrm{H}: 1 \mathrm{~V}$ slope, or 18.44 degrees.
- Length of the slope was assumed to be 150 feet (46 m , i.e., longest excavation slope length at $3 \mathrm{H}: 1 \mathrm{~V}$, which is located in the vicinity of north corner of the East Disposal Area, which has deeper excavation depths compared to the West Disposal Area).
- In order to assess seepage forced in the liner system, the permeability of the geocomposite drainage layer was assumed to be equivalent to $4 \mathrm{~cm} / \mathrm{sec}$ with a thickness of $250-\mathrm{mil}$.
- The average liner soil internal friction angle was assumed to be 28 degrees and zero cohesion to be conservative. The assumed friction angle is consistent with the literature values reported for compacted clayey soils.
- The seepage force analysis assumed percolation from a 24-hour, 25-year storm event (7.9 inches) to be 8.4 mm per hour.

The results of the veneer slope stability analysis of the liner system are presented in Appendix 5B. As shown in Appendix 5B, the calculated minimum friction angle to achieve the target factor is 22.7 degrees, which is typical of many commercially available products. (see GRI \#30 for HDPE GM/unsaturated cohesive soil and HDPE/geocomposite, peak values, and reported adhesions). The method presented is a conservative evaluation of veneer stability, as the analysis disregards
tensile strength of the geosynthetic components (e.g., geomembrane and geotextile/geonet composite), cohesion of the liner soils, and adhesion between the liner system components.

4.6 VENEER SLOPE ANALYSES OF FINAL COVER SYSTEM

Veneer stability of the final cover system was evaluated using a veneer stability model that evaluates the seepage forces within the final cover system using a set of equations and method developed by Koerner and Soong (1998). Both static and seepage forces were considered in the veneer stability analysis, using basic equations as shown on the calculation spreadsheets in Appendix 5B. The interface friction angle that provides the target factor of safety was estimated. A target FS of 1.5 was used in this analysis.

The veneer slope stability analysis was performed based on the following assumptions:

- Maximum final cover slope was assumed to be at a $4 \mathrm{H}: 1 \mathrm{~V}$ slope, or 14.04 degrees.
- Length of the slope was assumed to be 590 feet (180 m , longest $4 \mathrm{H}: 1 \mathrm{~V}$ slope of the East Disposal Area, which has taller waste heights than the West Disposal Area).
- In order to assess seepage forced in the final cover, the permeability of the geocomposite drainage layer was assumed to be equivalent to $4 \mathrm{~cm} / \mathrm{sec}$ with a thickness of 250 mil .
- The average cover soil internal friction angle was assumed to be 28 degrees and zero cohesion to be conservative. The assumed friction angle is consistent with the literature values reported for compacted clayey soils.
- The seepage force analysis assumed percolation from a 24-hour, 25-year storm event (7.9 inches) to be 8.4 mm per hour. The maximum drainage length was assumed to be 590 feet since the geocomposite drainage layer is not daylighted at the drainage swale locations.

The results of the veneer slope stability analysis of the final cover system are presented in Appendix 5B. As shown in Appendix 5B, the calculated minimum friction angle to achieve the target factor is 20.3 degree, which is typical of many commercially available products (see GRI \#30). The method presented is a conservative evaluation of veneer stability, as the analysis disregards tensile strength of the geosynthetic components (e.g., geomembrane and geotextile/geonet composite), cohesion of the cover soils, and adhesion between the cover system components. As shown in the calculations, saturation of the cover soil is not anticipated since the drainage layer has sufficient capacity to transmit flow so that the final cover remains unsaturated.

4.7 ANCHOR TRENCH DESIGN

The anchor trench for the composite liner system at the top of the side slope is normally constructed to ensure that the geomembrane can pull out of the anchor trench without being stressed to the yield point. Since the textured geomembrane is used on the sideslope for the proposed liner system, the frictional strength along the liner system is normally greater than the side slope angle (18.44 degrees for $3 \mathrm{H}: 1 \mathrm{~V}$ slopes). Therefore, under normal circumstances and as demonstrated in the veneer stability of the liner system section, the liner system is stable on the side slope, and the
geomembrane does not experience significant tensile stress. The anchoring of the geomembrane inside a trench at the top of the sideslope is generally used to protect the exposed edges of the geomembrane during construction. Therefore, run-out length and anchor trench calculation are not performed with textured geomembrane, and the standard anchor trench size shown on the drawing detail (Attachment 6C, Drawing 6C.2) is adequate and consistent with the landfill design standards.

5 SETTLEMENT ANALYSES

5.1 GENERAL

This section addresses post-construction settlement for the bottom liner system and final cover system. Settlement, which may induce stresses on the liner will occur due to consolidation of the foundation soils resulting from the stress induced by the landfill components (e.g., bottom liner, MSW, daily/intermediate cover, and final cover systems). Settlement of the final cover system will occur due to consolidation of foundation soils as well as consolidation (primary) and decomposition (secondary) within the MSW.

5.2 FOUNDATION SETTLEMENT

Foundation soils settlements are calculated using the following 1-D consolidation theory settlement equation used in geotechnical engineering for normally consolidated clays (Holtz and Kovacs, 1981).

$$
S=C_{c} \frac{H}{1+e_{0}} \log \left(\frac{P}{P_{0}}\right)
$$

where:
$\mathrm{S}=$ total settlement;
$\mathrm{C}_{\mathrm{c}} \quad=$ compression index;
H = initial thickness of compressible layer;
en = initial void ratio;
$\mathrm{P}_{0} \quad=$ initial effective overburden stress;
$\mathrm{P} \quad=$ final effective overburden pressure.
Following the calculation of settlement along the analyzed cross sections, settlement induced strains of the liner system are calculated using the following equation.

$$
\varepsilon=\frac{L_{0}-L_{f}}{L_{0}} \times 100(\text { percent })
$$

where:
$\varepsilon \quad=$ strain in the liner system (+ indicated compression, - indicated tension);
$\mathrm{L}_{\mathrm{f}} \quad=$ final length between calculation points based on post-settlement elevations; and
$\mathrm{Li} \quad=$ initial length between calculation points based on pre-settlement elevations.
The estimated tensile strains were compared to the conservative allowable tensile strains of 5\% for the liner system geomembrane and 0.5% for the compacted clay liner.

As described previously in this section, site lithology has been divided into upper "weathered" and lower "unweathered" horizons based on field observations. For foundation settlement calculations, unweathered soil layer is assumed to be incompressible and weathered soil layer remaining following cell excavation is considered the compressible layer. As shown on the landfill crosssections, the subgrade is very close to the top of the unweathered soil layer. The thickness of remaining weathered soil layer varies from zero to 14 feet within the West Disposal Area and East Disposal Area cell floors. To be conservative, this remaining weathered foundation soil layer is assumed to be normally consolidated. Due to very low thickness of the compressible soil layer, secondary compression is assumed to be negligible.

Potential heave (rebound) due to excavation of overburden above the excavation base grades was built into the foundation settlement spreadsheet when calculating the initial overburden stress of the soil layers.

Settlement of the foundation soils was calculated using the EXCEL spreadsheets as presented in Appendix 5C. Material property assumptions are also summarized in these spreadsheets. Unit weight of MSW is assumed to be 60 pcf for settlement calculations. Compression index (Cc) was estimated with empirical relationships using average moisture contents and liquid limits of the foundation soils, which are summarized in Table 5-2-7.

Two cross sections (Section 1 and 2) were analyzed for the proposed East Disposal Area and West Disposal Area, respectively. Both of these cross sections were located along the leachate corridor of the cells, which has the flattest slope on the cell floor (i.e., 1%). Leachate corridors with thicker underlying compressible foundation soils (i.e., weathered zone) were selected for settlement analyses. The locations of the cross sections on the excavation and final cover grading plans are presented in Figures 1 to 4 of Appendix 5C. The geometries of the cross sections are presented in Figures 5 and 6 of Appendix 5C.

The minimum calculated post-settlement leachate corridor slope is 0.9%, as compared to the original pre-settlement slope of 1%. Therefore, positive drainage of leachate towards the leachate collection sumps will be maintained. Maximum calculated tensile strain in the liner system is less than 0.1%, which is less than the allowable tensile strain for typical liner system geosynthetic components and compacted clay liners. As shown in Appendix 5C, the liner system will be relaxing (i.e., no tension) and therefore not impacted by settlement.

It is therefore concluded that foundation settlement and associated strain will not adversely affect the performance of the bottom liner system.

5.3 FINAL COVER SETTLEMENT

Settlement of the final cover system due to consolidation of MSW is evaluated in this section. The final cover system settles due to primary consolidation of MSW with the construction of the final cover system (i.e., increase in vertical stress), and secondary compression due to waste
degradation. Additional settlement of foundation soils due to final cover construction is assumed to be negligible due to small loading from the final cover system.

Final cover system settlements are calculated using the following 1-D consolidation equation presented below. This equation is similar to the one used for estimation of foundation soils settlements with two modifications: (i) Cc (modified compression index) is used instead of Cc (compression index) (Cc $\varepsilon=\mathrm{Cc} /(1+\mathrm{eo})$) due to availability of $\mathrm{Cc} \varepsilon$ of MSW in the literature; and (ii) secondary compression of waste is included in the analyses due to the higher potential for secondary settlement of waste compared to the foundation soils. This equation is from Babu et al. (2010, as obtained from Sowers, 1973).

$$
S=C_{c \varepsilon} H \log \left(\frac{P}{P_{0}}\right)+C_{\alpha} H \log \left(\frac{t_{2}}{t_{1}}\right)
$$

where:
$\mathrm{S} \quad=$ total settlement;
$\mathrm{C}_{\mathrm{c} \varepsilon}=$ modified compression index;
H = initial thickness of compressible layer;
$\mathrm{P}_{0} \quad=$ initial effective overburden stress;
$\mathrm{P} \quad=$ final effective overburden pressure. $\left(\mathrm{P}=\mathrm{P}_{0}+\Delta \mathrm{P}\right)$,
$\Delta \mathrm{P} \quad=$ final cover thickness x unit weight of final cover soils
$\mathrm{C}_{\alpha}=$ secondary compression index;
$\mathrm{t}_{1} \quad=$ time when secondary compression is assumed to begin (assumed to be 1 year)
t_{2} = time for when secondary settlements are calculated for (assumed to be 30 years)
Following the calculation of settlement along the analyzed cross section, settlement induced strains of the final cover system are calculated using the following equation.

$$
\varepsilon=\frac{L_{0}-L_{f}}{L_{0}} \times 100(\text { percent })
$$

where:
$\varepsilon \quad=$ strain in the final cover system (+ indicated compression, - indicated tension);
$\mathrm{L}_{\mathrm{f}} \quad=$ final length between calculation points based on post-settlement elevations; and
$\mathrm{L}_{\mathrm{i}} \quad=$ initial length between calculation points based on pre-settlement elevations.
The estimated tensile strains were compared to the conservative allowable tensile strains of 5\% for the final cover system geomembrane.

Final cover system settlements and accompanying strains were calculated using the EXCEL spreadsheet as presented in Appendix 5C. Material property assumptions are also summarized in
these spreadsheets. The unit weight of municipal solid waste is assumed to be 60 pcf for settlement calculations. The modified compression index ($\mathrm{C}_{\mathrm{c} \varepsilon}$) was selected as 0.205 based on the values reported in Babu et al. (2010), where $\mathrm{C}_{\mathrm{c} \varepsilon}$ values for MSW ranged from 0.163 to 0.205 .

Secondary compression index $\left(\mathrm{C}_{\alpha}\right)$ ranged from 0.015 to 0.35 . Fassett et al. (1994) reports C_{α} values ranging from 0.01 to 0.04 . Based on these values reported in the literature, a C_{α} of 0.05 is used in secondary compression calculations.

One cross section from the East Disposal Area was analyzed for final cover settlement analysis. The East Disposal Area has a higher waste thickness compared to the West Disposal Area, and therefore was selected for this analysis. The location of the analyzed cross section on the final cover grading plan is presented in Appendix 5C. The geometry of the cross section is presented in Figure 5-8 of Appendix 5C.

Calculations for the estimated 30-year settlement of the final cover system are presented in Appendix 5C and summarized in Table 5-5-2. Waste settlement was estimated to be about 9 percent of its original thickness after a 30-year period. As presented in the calculations, the strain calculated for each line segment within the final cover have a negative value, meaning the final cover system is under negative tension or relaxing. The negative strains are all less than 2 percent on the sideslope (between the toe and crest), and less than 0.4 percent on the top plateau (between the crest and peak). Both values are well within the tolerances for the components incorporated into the final cover. Based on data published by the Geosynthetic Research Institute (GRI), LLDPE geomembrane materials can tolerate strains in excess of 50 percent, which far exceeds the maximum predicted strain. An HDPE geomembrane can tolerate 5 percent or more stain, which also is below the predicted strain.

Therefore, the post-settlement sideslope will flatten slightly but will maintain and promote positive drainage from the top of the landfill.

In conclusion, the proposed slopes are expected to maintain drainage after landfill settlement has occurred, and settlement-induced strain is expected to be well within the material limits of the final cover system.

6 CONCLUSIONS AND RECOMMENDATIONS

The following general conclusions were presented in this attachment:

- Based upon site subsurface exploration, laboratory testing, and engineering analyses, the site is geotechnically suitable for development as a Type I MSW solid waste disposal facility.
- The slope stability of the proposed landfill excavation slopes, interim sideslopes, and final sideslopes are acceptable as designed.
- The veneer stability of the composite bottom liner and final cover systems is acceptable as designed.
- The waste is expected to settle relatively and uniformly based on the proposed site geometry. The proposed slopes will maintain drainage after landfill settlement has occurred and settlement is expected to be within the strain limits of the composite final cover system.
- Foundation settlement after filling is expected to be negligible and within the strain limits of the composite bottom liner system.

7 REFERENCES

Babu, G. L., Reddy, K., Chouskey, S., and Kulkarni H. "Prediction of Long-Term Municipal Solid Waste Landfill Settlement using Constitutive Model", Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, Vol. 14, No. 2, April 1, 2010.

Bray, J. D., Zekkos, D., Kavazanjian E., "Shear Strength of Municipal Solid Waste", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, June 2009.

EPA, "Solid Waste Disposal Facility Criteria, Technical Manual", EPA530-R-93-017, 1993.
Fasset, J., Leonards, G., and Repetto, P., "Geotechnical Properties of Municipal Solid Wastes and Their Use in Landfill Design, Proceedings of Waste Tech 94, Charleston, SC, 1994.

FHWA, "PC STABL6 Users Guide, Slope Stability Analysis Program", 1995.
Koerner, R. M. and Soong, T.Y., "Analysis and Design of Veneer Cover Systems," 6th International Conference on Geosynthetics, 1998.

Koerner, G. R. and Narejo, D., "Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to Soil Interfaces", GRI Report \#30, June 14, 2005.

Stark, T. D. and Choi, H., "Peak versus Residual Interface Strengths for Landfill Liner and Cover Design", Geosynthetics International, Vol. 11, No. 6, 2004.
U.S. Army Corps of Engineers "Design and Construction of Levees", Manual No. 1110-2-1913, 30 April 2000.

Zekkos, D., Bray, J. D., Kavazanjian, E. Matasovic, N., "Unit Weight of Municipal Solid Waste", Vol. 132, No. 10, October 2006.

DRAWINGS

- Drawing 5.1 Stability Sections Location Map 1
- Drawing 5.2 Stability Sections Location Map 2
- Drawing 5.3 East Disposal Area Stability Cross Section A-AA’
- Drawing 5.4 East Disposal Area Stability Cross Section B-BB'
- Drawing 5.5 East Disposal Area Stability Cross Section C-CC’
- Drawing 5.6 East Disposal Area Stability Cross Section D-DD'
- Drawing 5.7 West Disposal Area Stability Cross Section E-EE’

APPENDIX 5A

SLOPE STABILITY ANALYSES

- Shear Strength Parameters Assumptions
- PCSTABL5M Slope Stability Model Graphical Printouts
- PCSTABL5M Slope Stability Model Computer Outputs

SCS Engineers

TBPE Reg. \# F-3407
Inclusive of Pages 5-A-1 to 5-A-126

SHEAR STRENGTH PARAMETERS ASSUMPTIONS FOUNDATION SOILS

Foundation Soils - Shear Strength Parameters
 Drained
 Long-term Stability

Table 1. Summary of CU Test Results

Area	Sample Identification	Sample Depth (ft)	CU Test Results	
			$\mathrm{c}(\mathrm{psf})$	$\phi\left(^{\circ}\right)$
East Disposal Area	B-19	$50-51$	$1,065.6$	24.0
West Disposal Area	B-17	$25-26$	230.4	26.2
West Disposal Area	B-31	$15-15.9$	792.0	25.9
West Disposal Area	B-24	$45-46$	$1,440.0$	34.0
West Disposal Area	B-44	$50-51.5$	72.0	19.2
Minimum				

Table 2. Estimated Drained Friction Angle

Area	Sample Identification	Sample Depth (ft)	$\mathrm{PI}^{(1)}$	$\phi\left(^{\circ}\right)$
East Disposal Area	B-19	$50-51$	40	
West Disposal Area	B-17	$25-26$		
West Disposal Area	B-31	$15-15.9$	45	26.2
West Disposal Area	B-24	$45-46$		
West Disposal Area	B-44	$50-51.5$		26.7
Foundation Soils				

Available SPTs from East Disposal Area > 30 (stiff to very stiff clays). Indicative of the clay being over consolidated. To be conservative, stability analyses were performed assuming the clay is normally consolidated. (Over consolidated clays tend to have higher shear strengths than normally consolidated clays.)
For drained analysis (long-term), effective friction angle was estimated based on the plasticity index (PI) using the following relationship (EPRI, 1990):

```
sin}\mp@subsup{\phi}{}{\prime}=0.8-0.094\operatorname{ln}(\textrm{PI});\mathrm{ for foundation soils: Average PI = 42 and 的=26 .7 degrees
```


Based on Tables 1 and 2, the following shear strength parameters are estimated for foundation soils (drained conditions): $\phi^{\prime}=25^{\circ}$

To be conservative, cohesion will assumed to be zero for interim and long-term stability analyses.

$$
c=\frac{q_{u}}{2}
$$

where:
$\mathrm{c}=$ cohesion, undrained shear strength $\left(\mathrm{s}_{\mathrm{u}}\right)(\mathrm{psf})$

Table 1. Summary of Unconfined Compression Strength $\left(q_{u}\right)$ Test Results

Area	Sample	Depth	q_{u} (tsf)	q_{u} (psf)	c (psf)
West Disposal Area	B-24	5-7	14.94	29,880	14,940
	B-24	15-17	7.94	15,880	7,940
	B-17	15-17	8.09	16,180	8,090
	B-9	20-22	12.32	24,640	12,320
	B-16	25-27	17.76	35,520	17,760
	B-31	30-32	5.37	10,740	5,370
	B-44	30-32	4.44	8,880	4,440
	B-17	45-47	23.36	46,720	23,360
East Disposal Area	B-18	10-12	4.26	8,520	4,260
	B-43	10-12	7.12	14,240	7,120
	B-45	25-27	6.21	12,420	6,210
	B-21	30-32	10.49	20,980	10,490
	B-8	40-42	4.02	8,040	4,020
	B-18	45-47	3.59	7,180	3,590
	B-20	45-47	18.68	37,360	18,680
	B-15	55-57	1.61	3,220	1,610
	B-20	55-57	16.82	33,640	16,820
	B-19	70-72	16.29	32,580	16,290
Average of 10 Lowest Cohesion Values					5,265

1. $1 \mathrm{tsf}=2,000 \mathrm{psf}$

Average of 10 Lowest Cohesion Values: 5,265 psf
Conservatively, $\mathrm{c}=4,000 \mathrm{psf}$ will be used for foundation soils for excavation stability analyses.

Available SPTs from East Disposal Area > 30 (stiff to very stiff clays).
Assumed cohesion value is consistent with literature values reported for hard clays:

$$
\text { hard clays: } \mathrm{q}_{\mathrm{u}}>4 \text { tsf }(\mathrm{c}>4,000 \mathrm{psf})(\text { Das, 2002 })
$$

PCSTABL5M SLOPE STABILITY MODEL GRAPHICAL PRINTOUTS

SECTION AA'

Circular Failure Mode (Excavation, Undrained)

SECTION BB'

Circular Failure Surface (Interim Conditions)

SECTION BB'

Block Failure Surface (Interim Conditions)

SECTION CC ${ }^{\prime}$

Circular Failure Surface (Final Conditions)

SECTION CC ${ }^{\prime}$

Block Failure Surface (Final Conditions)

SECTION DD ${ }^{\prime}$

Circular Failure Surface (Final Conditions)

SECTION DD'

Block Failure Surface (Final Conditions)

SECTION EE'

Circular Failure Surface (Final Conditions)

1000

응
Safety Factors Are Calculated By The Modified Bishop Method

SECTION EE'

Block Failure Surface (Final Conditions)

PCSTABL5M SLOPE STABILITY MODEL COMPUTER OUTPUTS

SECTION AA'

Excavation, Circular Failure Mode (Short-Term, Undrained)
by Purdue University 1985 rev. for SCS Engineers HVA 2008 --Slope Stability Analysis--
Simplified Janbu, Simplified Bishop or Spencer`s Method of Slices
Run Date:
3/4/2019
Time of Run:
01:18PM
Run By:
SCS Engineers
Input Data Filename:
M:waco xs a - undrained.
M:waco xs a - undrained.OUT
Output Filename:
ENGLISH
Plotted Output Filename: M:waco xs a - undrained.PLT
PROBLEM DESCRIPTION Waco Landfill
Cross-Section A-Circ.-undrained
BOUNDARY COORDINATES
Note: User origin value specified.
Add 0.00 to X -values and 0.00 to Y -values listed.

13 Top 13 Total	Boundaries Boundaries Boundary	X-Left	Y-Left	X-Right	Y-Right
No.	(ft)	(ft)	(ft)	(ftt)	Soil Type
Below Bnd					

ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil							
Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt	Unit Wt.	Intercept	Angle	Pressure	Constant	Surfac
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	128.0	128.0	4000.0	0.0	0.00	0.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water $=62.40$
Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X-Water Y-Water
No. (ft) (ft)
$1 \quad 0.00 \quad 519.00$
2 1000.00 519.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified. 10000 Trial Surfaces Have Been Generated.
100 Surfaces Initiate From Each Of100 Points Equally Spaced
Along The Ground Surface Between $X=100.00 \mathrm{ft}$. and $x=250.00 \mathrm{ft}$.
Each Surface Terminates Between $\quad X=340.00 \mathrm{ft}$. and $\quad X=450.00 \mathrm{ft}$.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is $Y=400.00 \mathrm{ft}$.
10.00 ft . Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical

10	9.2	57428.8	0.0	29045.3	0.0	0.0	0.0	0.0	0.0
11	9.3	63150.0	0.0	31395.0	0.0	0.0	0.0	0.0	0.0
12	9.3	66709.0	0.0	32659.7	0.0	0.0	0.0	0.0	0.0
13	0.2	1659.4	0.0	812.3	0.0	0.0	0.0	0.0	0.0
14	9.6	75027.6	0.0	35271.6	0.0	0.0	0.0	0.0	0.0
15	9.8	82986.8	0.0	36790.1	0.0	0.0	0.0	0.0	0.0
16	3.5	31244.0	0.0	13324.5	0.0	0.0	0.0	0.0	0.0
17	6.4	59138.8	0.0	24699.6	0.0	0.0	0.0	0.0	0.0
18	9.9	97141.3	0.0	38970.8	0.0	0.0	0.0	0.0	0.0
19	10.0	103195.5	0.0	39628.3	0.0	0.0	0.0	0.0	0.0
20	10.0	108487.5	0.0	39995.0	0.0	0.0	0.0	0.0	0.0
21	10.0	112967.7	0.0	40070.2	0.0	0.0	0.0	0.0	0.0
22	10.0	116596.6	0.0	39853.6	0.0	0.0	0.0	0.0	0.0
23	3.8	44987.6	0.0	15020.7	0.0	0.0	0.0	0.0	0.0
24	6.2	74356.8	0.0	24325.2	0.0	0.0	0.0	0.0	0.0
25	9.9	121190.7	0.0	38548.0	0.0	0.0	0.0	0.0	0.0
26	9.8	122126.0	0.0	37461.8	0.0	0.0	0.0	0.0	0.0
27	4.1	52044.9	0.0	15598.2	0.0	0.0	0.0	0.0	0.0
28	5.6	70106.0	0.0	20491.4	0.0	0.0	0.0	0.0	0.0
29	9.6	121275.4	0.0	34434.4	0.0	0.0	0.0	0.0	0.0
30	9.4	119520.9	0.0	32499.8	0.0	0.0	0.0	0.0	0.0
31	5.4	68651.3	0.0	18045.1	0.0	0.0	0.0	0.0	0.0
32	3.8	47954.7	0.0	12245.0	0.0	0.0	0.0	0.0	0.0
33	9.1	110279.7	0.0	27810.1	0.0	0.0	0.0	0.0	0.0
34	8.9	102801.5	0.0	25065.2	0.0	0.0	0.0	0.0	0.0
35	8.6	94880.2	0.0	22061.4	0.0	0.0	0.0	0.0	0.0
36	8.4	86604.4	0.0	18805.2	0.0	0.0	0.0	0.0	0.0
37	8.1	78066.6	0.0	15303.9	0.0	0.0	0.0	0.0	0.0
38	7.9	69363.5	0.0	11565.1	0.0	0.0	0.0	0.0	0.0
39	3.5	28431.4	0.0	3972.5	0.0	0.0	0.0	0.0	0.0
40	4.1	32148.2	0.0	3624.4	0.0	0.0	0.0	0.0	0.0
41	7.3	51765.2	0.0	3408.0	0.0	0.0	0.0	0.0	0.0
42	1.9	12701.1	0.0	176.1	0.0	0.0	0.0	0.0	0.0
43	4.1	25235.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
44	0.9	5156.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	6.6	34794.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	6.2	26902.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47	2.8	10125.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48	3.0	9288.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	5.5	12343.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	5.1	5900.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51	2.5	760.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Failure Surface Specified By 42 Coordinate Points									
	Point X		X-Surf	Y-Surf					
	No.		(ft)	(ft)					
			104.55	520.65					
			111.62	513.58					
			119.03	506.86					
			126.73	500.48					
			134.73	494.48					
			142.99	488.85					
			151.51	483.61					
			160.27	478.78					
			169.24	474.36					
			178.41	470.37					
			187.75	466.80					
			197.25	463.68					
			206.88	461.00					
			216.63	458.78					
			226.48	457.01					
			236.39	455.70					
			246.35	454.86					
			256.35	454.48					

SECTION BB'

Circular Failure Mode (Interim Conditions)

by Purdue University 1985
rev. for SCS Engineers HVA 2008
--Slope Stability Analysis--
Simplified Janbu, Simplified Bishop
or Spencer`s Method of Slices
Run Date:
Time of Run:
3/4/2019
Run By:
01:35PM
Run By: SCS Engineers
Input Data Filename: M:waco xs b - circular.
Output Filename: M:waco xs b - circular.OUT ENGLISH
Plotted Output Filename: M:waco xs b - circular.PLT
PROBLEM DESCRIPTION Waco Landfill
Cross-Section B-Circular
BOUNDARY COORDINATES
Note: User origin value specified.
Add 0.00 to X -values and 0.00 to Y -values listed.

$\begin{aligned} & 15 \text { Top } \\ & 40 \text { Total } \end{aligned}$	Boundaries Boundaries				
Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	0.00	519.90	144.00	522.40	1
2	144.00	522.40	149.50	524.30	2
3	149.50	524.30	662.70	695.30	2
4	662.70	695.30	822.60	694.60	2
5	822.60	694.60	945.40	694.10	2
6	945.40	694.10	1088.40	687.00	2
7	1088.40	687.00	1644.30	547.70	2
8	1644.30	547.70	1659.30	547.70	2
9	1659.30	547.70	1661.00	547.10	2
10	1661.00	547.10	1667.00	545.10	2
11	1667.00	545.10	1672.70	543.20	1
12	1672.70	543.20	1682.70	543.20	1
13	1682.70	543.20	1686.80	544.50	1
14	1686.80	544.50	1700.00	541.60	1
15	1700.00	541.60	1798.50	540.30	1
16	149.00	524.30	152.50	524.20	2
17	152.50	524.20	662.90	694.30	3
18	662.90	694.30	822.60	693.60	3
19	822.60	693.60	945.40	693.10	3
20	945.40	693.10	1088.20	686.00	3
21	1088.20	686.00	1642.40	547.10	3
22	1642.40	547.10	1661.00	547.10	2
23	152.50	524.20	343.90	518.80	2
24	343.90	518.80	547.30	521.90	2
25	547.30	521.90	750.00	518.40	2
26	750.00	518.40	955.70	522.00	2
27	955.70	522.00	1180.60	517.50	2
28	1180.60	517.50	1409.00	519.90	2
29	1409.00	519.90	1533.10	517.40	2
30	1533.10	517.40	1622.90	547.20	2
31	1622.90	547.20	1642.40	547.10	2
32	144.00	522.40	343.90	516.80	1
33	343.90	516.80	547.30	519.90	1
34	547.30	519.90	750.00	516.40	1
35	750.00	516.40	955.70	520.00	1
36	955.70	520.00	1180.60	515.50	1
37	1180.60	515.50	1409.00	517.90	1
38	1409.00	517.90	1533.40	515.40	1
39	1533.40	515.40	1623.20	545.20	1
40	1623.20	545.20	1667.00	545.10	1

ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	128.0	128.0	0.0	25.0	0.00	0.0	1
2	120.0	120.0	200.0	20.0	0.00	0.0	1
3	60.0	60.0	200.0	32.0	0.00	0.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water $=62.40$
Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X-Water Y-Water
No. (ft) (ft)
$1 \quad 0.00 \quad 517.00$
2 1700.00 517.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
10000 Trial Surfaces Have Been Generated.
100 Surfaces Initiate From Each Of100 Points Equally Spaced
Along The Ground Surface Between $X=50.00 \mathrm{ft}$.
and $x=200.00 \mathrm{ft}$.
Each Surface Terminates Between $\quad X=600.00 \mathrm{ft}$. and $\quad X=850.00 \mathrm{ft}$.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is $Y=0.00 \mathrm{ft}$.
15.00 ft . Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * * Failure Surface Specified By 44 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)

1	109.09	521.79

$123.45 \quad 517.45$
$137.93 \quad 513.52$
$152.51 \quad 510.00$
$167.18 \quad 506.90$
$181.94 \quad 504.22$
$196.77 \quad 501.96$
211.66500 .12
$226.59 \quad 498.71$
$241.56 \quad 497.72$
$256.55 \quad 497.16$
271.55497 .03
$286.54 \quad 497.32$
$301.53 \quad 498.04$
$316.48 \quad 499.19$
$331.40 \quad 500.76$
$346.27 \quad 502.76$
$361.07 \quad 505.17$
$375.80 \quad 508.01$
$390.44 \quad 511.27$
$404.99 \quad 514.94$
$419.42 \quad 519.03$
$433.73 \quad 523.52$
$447.91 \quad 528.42$
$461.94 \quad 533.72$
$475.81 \quad 539.42$
$489.52 \quad 545.51$
$503.05 \quad 551.99$
$516.39 \quad 558.85$
$529.53 \quad 566.09$
Revision 0 5-A-47

		Individual Weight	on t Water Force	Water Force	$\begin{gathered} \text { slices } \\ \text { Tie } \\ \text { Force } \end{gathered}$	Tie Force	Earthquake Force		charge
Slice	Width		Top	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)							
1	14.4	4218.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1.7	1030.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	12.8	11350.5	0.0	1440.6	0.0	0.0	0.0	0.0	0.0
4	6.1	7432.5	0.0	1642.1	0.0	0.0	0.0	0.0	0.0
5	5.0	7521.4	0.0	1780.3	0.0	0.0	0.0	0.0	0.0
6	0.5	851.3	0.0	199.3	0.0	0.0	0.0	0.0	0.0
7	3.0	5479.7	0.0	1277.2	0.0	0.0	0.0	0.0	0.0
8	0.0	13.4	0.0	3.1	0.0	0.0	0.0	0.0	0.0
9	14.7	33225.1	0.0	7999.3	0.0	0.0	0.0	0.0	0.0
10	14.8	42798.3	0.0	10705.5	0.0	0.0	0.0	0.0	0.0
11	14.8	51657.0	0.0	13018.5	0.0	0.0	0.0	0.0	0.0
12	14.9	59761.9	0.0	14936.3	0.0	0.0	0.0	0.0	0.0
13	14.9	67077.8	0.0	16457.5	0.0	0.0	0.0	0.0	0.0
14	15.0	73574.2	0.0	17580.7	0.0	0.0	0.0	0.0	0.0
15	15.0	79225.0	0.0	18305.2	0.0	0.0	0.0	0.0	0.0
16	15.0	84008.2	0.0	18630.1	0.0	0.0	0.0	0.0	0.0
17	15.0	87907.2	0.0	18555.5	0.0	0.0	0.0	0.0	0.0
18	15.0	90909.5	0.0	18081.2	0.0	0.0	0.0	0.0	0.0
19	15.0	93007.7	0.0	17207.7	0.0	0.0	0.0	0.0	0.0
20	14.9	94198.8	0.0	15935.7	0.0	0.0	0.0	0.0	0.0
21	5.4	34044.0	0.0	5359.0	0.0	0.0	0.0	0.0	0.0
22	7.1	45385.6	0.0	6761.0	0.0	0.0	0.0	0.0	0.0
23	2.4	15063.3	0.0	2146.1	0.0	0.0	0.0	0.0	0.0
24	10.8	68515.5	0.0	9089.7	0.0	0.0	0.0	0.0	0.0
25	4.0	25783.8	0.0	3110.8	0.0	0.0	0.0	0.0	0.0
26	14.7	93440.2	0.0	9740.4	0.0	0.0	0.0	0.0	0.0
27	14.6	91698.7	0.0	6887.8	0.0	0.0	0.0	0.0	0.0
28	14.5	89093.8	0.0	3645.1	0.0	0.0	0.0	0.0	0.0
29	7.3	43550.9	0.0	485.3	0.0	0.0	0.0	0.0	0.0
30	3.1	18578.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31	4.0	23536.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32	3.1	17965.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33	11.2	64920.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34	14.2	82068.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	14.0	80889.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36	13.9	79278.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	13.7	77249.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	13.5	74821.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39	13.3	72014.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	13.1	68850.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	12.9	65351.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42	12.7	61544.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0

43	12.5	57456.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0
44	12.2	53116.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	12.0	48553.9		0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	11.7	43801.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
47	11.4	38890.4		0.0	0.0	0.0	0.0	0.0	0.0	0.0
48	11.2	33856.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	10.9	28734.2		0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	10.6	23559.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0
51	10.3	18369.3		0.0	0.0	0.0	0.0	0.0	0.0	0.0
52	4.8	6978.2		0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	0.2	265.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
54	4.9	5670.2		0.0	0.0	0.0	0.0	0.0	0.0	0.0
55	9.6	6112.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0
56	2.2	451.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0
57	0.8	47.2		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Failure Surface Specified By 44 Coordinate Points										
Point X-Surf Y-Surf										
No. (ft) (ft)										
$1 \quad 100.00$ 521.64										
2			114.44		517.58					
3			128.99		513.92					
4			143.63		510.64					
5			158.35		507.77					
6			173.14		505.29					
7			188.00		503.21					
8			202.90		501.53					
9			217.85		500.25					
10			232.82		499.38					
11			247.81		498.91					
12			262.81		498.84					
13			277.81		499.18					
14			292.79		499.92					
15			307.75		501.06					
16			322.67		502.60					
17			337.54		504.55					
18			352.36		506.90					
19			367.10		509.64					
20			381.77		512.78					
21			396.35		516.32					
22			410.83		520.24					
23			425.19		524.55					
24			439.44		529.25					
25			453.55		534.33					
26			467.52		539.79					
27			481.34		545.63					
28			495.00		551.83					
29			508.49		558.40					
30			521.79		565.33					
31			534.90		572.61					
32			547.81		580.25					
33			560.51		588.22					
34			573.00		596.54					
35			585.25		605.20					
36			597.27		614.17					
37			609.04		623.47					
38			620.55		633.09					
39			631.80		643.00					
40			642.78		653.22					
41			653.49		663.73					
42			663.90		674.53					
43			674.02		685.60					
44			682.35		695.21					
		Center	At $\mathrm{X}=$	- 25	7.8 ; $\mathrm{Y}=$. 8	Rad			

Failure Surface ${ }^{* * *}{ }^{2.106}{ }^{* * *}$ Becified By 43 Coordinate Points Point X-Surf Y-Surf

No.	(ft)	(ft)
1	113.64	521.87

128.01517 .59
$142.51 \quad 513.73$
$157.11 \quad 510.29$
$171.80 \quad 507.29$
$186.58 \quad 504.71$
$201.43 \quad 502.57$
$216.33 \quad 500.86$
$231.28 \quad 499.59$
246.25498 .76
261.25498 .36
$276.25 \quad 498.41$
$291.24 \quad 498.89$
306.21499 .81
$321.15 \quad 501.17$
$336.04 \quad 502.96$
$350.88 \quad 505.19$
$365.64 \quad 507.86$
$380.31 \quad 510.95$
$394.90 \quad 514.47$
$409.37 \quad 518.42$
$423.72 \quad 522.78$
$437.93 \quad 527.57$
$452.00 \quad 532.77$
$465.92 \quad 538.38$
$479.66 \quad 544.39$
$493.22 \quad 550.80$
$506.59 \quad 557.61$
$519.75 \quad 564.80$
$532.69 \quad 572.38$
$545.41 \quad 580.33$
$557.89 \quad 588.65$
$570.13 \quad 597.33$
$582.10 \quad 606.37$
$593.80 \quad 615.75$
$605.23 \quad 625.47$
$616.36 \quad 635.52$
$627.20 \quad 645.89$
$637.73 \quad 656.57$
$647.94 \quad 667.56$
$657.83 \quad 678.84$
$667.38 \quad 690.41$
$671.15 \quad 695.26$
Circle Center At $X=267.2$; $Y=1011.1$ and Radius, 512.8
2.107 ***

Failure Surface Specified By 45 Coordinate Points
Point X-Surf Y-Surf
No. (ft) (ft)
$100.00 \quad 521.64$
$114.27 \quad 517.02$
$128.67 \quad 512.81$
$143.18 \quad 509.01$
$157.80 \quad 505.64$
$172.50 \quad 502.69$
$187.29 \quad 500.16$
$202.14 \quad 498.05$
217.05496 .38
$231.99 \quad 495.13$
$246.97 \quad 494.31$

12	261.97	493.93		
13	276.97	493.97		
14	291.96	494.45		
15	306.93	495.36		
16	321.87	496.69		
17	336.77	498.46		
18	351.61	500.65		
19	366.38	503.27		
20	381.06	506.31		
21	395.66	509.78		
22	410.15	513.66		
23	424.52	517.95		
24	438.76	522.66		
25	452.86	527.77		
26	466.81	533.29		
27	480.60	539.20		
28	494.21	545.51		
29	507.63	552.21		
30	520.85	559.29		
31	533.87	566.75		
32	546.66	574.58		
33	559.23	582.77		
34	571.55	591.32		
35	583.62	600.22		
36	595.44	609.47		
37	606.98	619.05		
38	618.24	628.96		
39	629.21	639.18		
40	639.89	649.72		
41	650.25	660.56		
42	660.30	671.70		
43	670.03	683.12		
44	679.43	694.81		
45	679.74	695.23		
Circle Center At $X=267.9$; $Y=1015.8$ and Radius, *** 2.107 ***				521.9
Failure Surface Specified By 43 Coordinate Points				
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	109.09	521.79		
2	123.55	517.80		
3	138.11	514.21		
4	152.77	511.03		
5	167.51	508.26		
6	182.33	505.90		
7	197.20	503.96		
8	212.12	502.44		
9	227.08	501.33		
10	242.07	500.64		
11	257.07	500.37		
12	272.06	500.52		
13	287.05	501.09		
14	302.02	502.08		
15	316.96	503.49		
16	331.84	505.31		
17	346.68	507.55		
18	361.44	510.20		
19	376.12	513.27		
20	390.72	516.74		
21	405.20	520.62		
22	419.58	524.91		
23	433.83	529.59		
24	447.94	534.67		

SECTION BB'

Block Failure Mode (Interim Conditions)

ISOTROPIC SOIL PARAMETERS
4 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	128.0	128.0	0.0	25.0	0.00	0.0	1
2	120.0	120.0	200.0	20.0	0.00	0.0	1
3	60.0	60.0	200.0	32.0	0.00	0.0	1
4	100.0	100.0	0.0	11.0	0.00	0.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water $=62.40$
Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X-Water Y-Water

No.	(ft)	(ft)
1	0.00	517.00

2 1700.00 517.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
100 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is 10.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	152.50	523.50	152.50	523.50	1.00
2	153.00	523.50	343.90	517.50	1.00
3	350.00	517.00	1180.60	517.00	1.00

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Janbu Method * * Failure Surface Specified By 21 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	150.80	524.73
2	152.50	523.13
3	313.50	518.27
4	459.05	517.27
5	465.90	524.55
6	472.09	532.41
7	479.13	539.51
8	482.01	549.08
9	486.65	557.94
10	493.35	565.36
11	496.09	574.98
12	502.37	582.77
13	508.76	590.46
14	514.44	598.69
15	518.28	607.92
16	522.37	617.05
17	529.37	624.18
18	531.98	633.84
19	537.34	642.28
20	543.05	650.49
21	545.68	656.31

		Individual data on the 26			slices				
			Water	Water	Tie	Tie	Earth	ake	
			Force	Force	Force	Force			charge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)							
1	0.5	21.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0

7	448.97	539.01	
8	452.81	548.24	
9	455.26	557.94	
10	461.62	565.66	
11	465.67	574.80	
12	472.27	582.31	
13	475.91	591.63	
14	481.55	599.88	
15	486.81	608.39	
16	491.05	617.44	
17	496.72	625.68	
18	503.30	633.21	
19	507.81	642.14	
20	508.88	644.05	
***	1.421		
Failure Su	ace Spec	By 25	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	151.36	524.92	
2	152.50	523.84	
3	326.04	517.65	
4	554.15	516.73	
5	558.76	525.61	
6	565.58	532.92	
7	571.92	540.66	
8	577.33	549.07	
9	583.98	556.54	
10	591.00	563.66	
11	591.54	573.64	
12	595.92	582.63	
13	598.97	592.16	
14	603.32	601.16	
15	606.02	610.79	
16	612.48	618.42	
17	614.04	628.30	
18	618.58	637.21	
19	623.10	646.13	
20	629.67	653.67	
21	635.94	661.46	
22	638.92	671.00	
23	645.77	678.29	
24	652.27	685.88	
25	652.69	691.96	
*	1.443		
Failure Su	ace Spec	By 26	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	150.36	524.59	
2	152.50	523.34	
3	295.23	519.04	
4	626.14	516.82	
5	631.80	525.06	
6	634.49	534.69	
7	640.23	542.89	
8	647.20	550.06	
9	652.74	558.38	
10	658.91	566.25	
11	664.15	574.77	
12	671.04	582.01	
13	677.53	589.62	
14	679.86	599.35	
15	686.45	606.87	
16	692.25	615.01	

17	696.35	624.13	
18	697.96	634.00	
19	703.79	642.13	
20	707.43	651.45	
21	713.83	659.13	
22	720.37	666.69	
23	723.22	676.28	
24	726.87	685.59	
25	733.93	692.67	
26	734.52	694.99	
*	1.455		
Failure Surface Specified By 18 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	150.73	524.71	
2	152.50	523.21	
3	296.68	519.27	
4	377.73	516.80	
5	384.15	524.47	
6	390.51	532.18	
7	397.25	539.57	
8	402.30	548.21	
9	409.29	555.35	
10	416.11	562.67	
11	418.93	572.26	
12	425.68	579.64	
13	427.43	589.48	
14	433.70	597.27	
15	437.50	606.53	
16	444.54	613.63	
17	450.76	621.45	
18	453.07	625.45	
***	1.465		
Failure Surface Specified By 17 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	148.44	523.93	
2	152.50	523.47	
3	262.70	519.77	
4	351.57	517.32	
5	355.00	526.71	
6	360.92	534.77	
7	367.74	542.09	
8	373.94	549.93	
9	380.80	557.21	
10	387.12	564.96	
11	393.23	572.87	
12	397.09	582.10	
13	403.59	589.70	
14	409.05	598.07	
15	416.01	605.25	
16	420.54	614.17	
17	420.65	614.65	
*	1.478		
Failure Surface Specified By 17 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	150.79	524.73	
2	152.50	523.68	
3	272.49	519.90	
4	410.38	516.63	
5	412.66	526.37	
6	418.83	534.24	

Revision 0 5-A-62

7	425.54	541.65	
8	429.42	550.87	
9	434.41	559.53	
10	440.89	567.15	
11	443.77	576.73	
12	446.03	586.47	
13	450.75	595.29	
14	455.49	604.09	
15	461.00	612.43	
16	464.74	621.71	
17	468.59	630.62	
***	1.520		
Failure Su	ace Spec	By 18	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	150.74	524.71	
2	152.50	523.60	
3	336.90	517.43	
4	401.86	516.54	
5	406.85	525.21	
6	412.61	533.39	
7	419.67	540.46	
8	423.46	549.72	
9	429.72	557.51	
10	431.79	567.30	
11	438.29	574.90	
12	445.00	582.31	
13	451.43	589.97	
14	451.72	599.97	
15	456.13	608.94	
16	457.66	618.82	
17	464.46	626.16	
18	466.59	629.96	
***	1.527		
Failure Su	ace Spec	By 17	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	149.68	524.36	
2	152.50	523.56	
3	217.82	521.41	
4	378.54	517.09	
5	385.58	524.20	
6	387.54	534.00	
7	391.01	543.38	
8	397.88	550.65	
9	404.76	557.90	
10	410.36	566.19	
11	413.76	575.59	
12	420.48	582.99	
13	425.86	591.43	
14	430.07	600.49	
15	436.37	608.26	
16	440.00	617.58	
17	440.82	621.37	
**	1.529		

SECTION CC'

Circular Failure Mode (Final Conditions)

\begin{tabular}{|c|c|c|c|c|c|}

\hline \multicolumn{6}{|c|}{| ** PCSTABL5M3 ** |
| :--- |
| by Purdue University 1985 rev. for SCS Engineers HVA 2008 --Slope Stability Analysis-- |
| Simplified Janbu, Simplified Bishop or Spencer`s Method of Slices |}

\hline \multicolumn{6}{|l|}{Run Date: 3/4/2019}

\hline \multicolumn{6}{|l|}{Time of Run: 02:01PM}

\hline \multicolumn{6}{|l|}{Run By: SCS Engineers}

\hline \multicolumn{6}{|l|}{Input Data Filename: M:waco xs c - c}

\hline \multicolumn{6}{|l|}{Output Filename: M:waco xs c - circular.OUT}

\hline \multicolumn{6}{|l|}{Unit: ENGLISH}

\hline \multicolumn{6}{|l|}{Plotted Output Filename: M:waco xs c - circular.PLT}

\hline \multicolumn{6}{|l|}{PROBLEM DESCRIPTION Waco Landfill}

\hline \multicolumn{6}{|l|}{Cross-Section C-Circular}

\hline \multicolumn{6}{|l|}{BOUNDARY COORDINATES}

\hline \multicolumn{6}{|l|}{Note: User origin value specified.}

\hline \multicolumn{6}{|l|}{Add 0.00 to X -values and 0.00 to Y -values listed.}

\hline 12 Top \& Boundari \& \& \& \&

\hline 27 Total \& Boundari \& \& \& \&

\hline Boundary \& X-Left \& Y-Left \& X-Right \& Y-Right \& Soil Type

\hline No. \& (ft) \& (ft) \& (ft) \& (ft) \& Below Bnd

\hline 1 \& 0.00 \& 530.00 \& 31.40 \& 529.40 \& 1

\hline 2 \& 31.40 \& 529.40 \& 60.20 \& 537.50 \& 1

\hline 3 \& 60.20 \& 537.50 \& 72.30 \& 541.30 \& 1

\hline 4 \& 72.30 \& 541.30 \& 74.30 \& 541.30 \& 1

\hline 5 \& 74.30 \& 541.30 \& 101.60 \& 532.20 \& 1

\hline 6 \& 101.60 \& 532.20 \& 111.60 \& 532.20 \& 1

\hline 7 \& 111.60 \& 532.20 \& 127.30 \& 537.40 \& 1

\hline 8 \& 127.30 \& 537.40 \& 135.00 \& 540.00 \& 2

\hline 9 \& 135.00 \& 540.00 \& 150.00 \& 540.00 \& 2

\hline 10 \& 150.00 \& 540.00 \& 738.00 \& 687.00 \& 2

\hline 11 \& 738.00 \& 687.00 \& 950.60 \& 697.60 \& 2

\hline 12 \& 950.60 \& 697.60 \& 1202.60 \& 688.00 \& 2

\hline 13 \& 127.30 \& 537.40 \& 154.20 \& 537.40 \& 1

\hline 14 \& 154.20 \& 537.40 \& 162.20 \& 539.40 \& 2

\hline 15 \& 162.20 \& 539.40 \& 738.50 \& 683.50 \& 3

\hline 16 \& 738.50 \& 683.50 \& 950.60 \& 694.10 \& 3

\hline 17 \& 950.60 \& 694.10 \& 1202.40 \& 684.50 \& 3

\hline 18 \& 162.20 \& 539.40 \& 171.00 \& 539.30 \& 2

\hline 19 \& 171.00 \& 539.30 \& 247.10 \& 514.20 \& 2

\hline 20 \& 247.10 \& 514.20 \& 575.90 \& 520.20 \& 2

\hline 21 \& 575.90 \& 520.20 \& 909.60 \& 519.40 \& 2

\hline 22 \& 909.60 \& 519.40 \& 1202.60 \& 524.60 \& 2

\hline 23 \& 154.20 \& 537.40 \& 171.00 \& 537.40 \& 1

\hline 24 \& 171.00 \& 537.40 \& 246.80 \& 512.20 \& 1

\hline 25 \& 246.80 \& 512.20 \& 575.90 \& 518.20 \& 1

\hline 26 \& 575.90 \& 518.20 \& 909.60 \& 517.40 \& 1

\hline 27 \& 909.60 \& 517.40 \& 1202.60 \& 522.90 \& 1

\hline
\end{tabular}

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	0.00	513.00
2	1200.00	513.00

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified. 10000 Trial Surfaces Have Been Generated.

100 Surfaces Initiate From Each Of100 Points Equally Spaced
Along The Ground Surface Between $X=100.00 \mathrm{ft}$. and $x=200.00 \mathrm{ft}$.
Each Surface Terminates Between $X=600.00 \mathrm{ft}$. and $\quad X=850.00 \mathrm{ft}$.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is $Y=0.00 \mathrm{ft}$.
15.00 ft . Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * * Failure Surface Specified By 45 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)

$1 \quad 155.56 \quad 541.39$

1	169.55	536.00

$3 \quad 183.70 \quad 531.00$
$4 \quad 197.98 \quad 526.41$
$5 \quad 212.38 \quad 522.22$
$6 \quad 226.90 \quad 518.44$
$7 \quad 241.51 \quad 515.08$

8	256.22	512.12
9	271.00	509.59

10	285.85	507.47

11	300.76	505.77

$12 \quad 315.70 \quad 504.50$
$13 \quad 330.68 \quad 503.65$
$14 \quad 345.67 \quad 503.22$
$15 \quad 360.67 \quad 503.22$

16	375.67	503.64
17	300.64	504.48

17	390.64	504.48

$18 \quad 405.59 \quad 505.75$
$19 \quad 420.49 \quad 507.44$
$20 \quad 435.35 \quad 509.55$
$21 \quad 450.13 \quad 512.08$
$22 \quad 464.84 \quad 515.02$
$23 \quad 479.46 \quad 518.38$
$493.98 \quad 522.16$
$508.38 \quad 526.34$
$522.66 \quad 530.92$
$536.81 \quad 535.91$
$550.81 \quad 541.30$
$564.65 \quad 547.08$
$578.32 \quad 553.25$
$591.82 \quad 559.80$
$605.12 \quad 566.73$
$618.22 \quad 574.04$
$631.11 \quad 581.71$
$643.78 \quad 589.74$
$656.21 \quad 598.13$
$668.40 \quad 606.87$
$680.35 \quad 615.95$
$692.03 \quad 625.36$
$703.44 \quad 635.09$
$714.56 \quad 645.15$
Revision 0 5-A-66

3	192.18	531.76		
4	206.22	526.47		
5	220.41	521.63		
6	234.76	517.24		
7	249.23	513.31		
8	263.83	509.84		
9	278.52	506.84		
10	293.31	504.30		
11	308.17	502.24		
12	323.08	500.65		
13	338.04	499.54		
14	353.03	498.89		
15	368.02	498.73		
16	383.02	499.04		
17	398.00	499.83		
18	412.95	501.10		
19	427.85	502.84		
20	442.68	505.05		
21	457.44	507.73		
22	472.11	510.88		
23	486.67	514.49		
24	501.10	518.56		
25	515.40	523.09		
26	529.55	528.08		
27	543.53	533.51		
28	557.34	539.38		
29	570.95	545.68		
30	584.35	552.42		
31	597.53	559.57		
32	610.48	567.15		
33	623.18	575.13		
34	635.62	583.51		
35	647.79	592.28		
36	659.67	601.43		
37	671.26	610.95		
38	682.54	620.84		
39	693.50	631.09		
40	704.13	641.67		
41	714.41	652.59		
42	724.35	663.83		
43	733.92	675.38		
44	743.12	687.22		
45	743.15	687.26		
Circle Center At $\underset{\text { A }}{\text { 2. }} \mathrm{X}=\underset{* * *}{365.7} ; \quad \mathrm{Y}=970.9$ and Radius,				472.1
Failure Surface Specified By 45 Coordinate Points				
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	164.65	543.66		
2	178.29	537.44		
3	192.13	531.64		
4	206.14	526.29		
5	220.31	521.37		
6	234.63	516.91		
7	249.09	512.89		
8	263.66	509.33		
9	278.33	506.23		
10	293.10	503.59		
11	307.94	501.41		
12	322.84	499.70		
13	337.79	498.46		
14	352.77	497.69		
15	367.77	497.39		

16	382.77	497.56		
17	397.75	498.20		
18	412.71	499.31		
19	427.63	500.89		
20	442.49	502.94		
21	457.28	505.45		
22	471.98	508.43		
23	486.58	511.86		
24	501.07	515.75		
25	515.42	520.09		
26	529.64	524.89		
27	543.70	530.12		
28	557.58	535.79		
29	571.28	541.90		
30	584.78	548.43		
31	598.08	555.39		
32	611.14	562.75		
33	623.97	570.53		
34	636.55	578.70		
35	648.87	587.26		
36	660.91	596.21		
37	672.66	605.52		
38	684.12	615.21		
39	695.27	625.24		
40	706.09	635.62		
41	716.59	646.34		
42	726.74	657.38		
43	736.55	668.73		
44	745.99	680.39		
45	751.52	687.67		
Circle Center At $X=369.8$; $Y=975.5$ and Radius, *** 2.742 ***				478.1
Failure Surface Specified By 45 Coordinate Points				
Poin	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	157.58	541.89		
2	171.44	536.16		
3	185.47	530.85		
4	199.65	525.96		
5	213.97	521.51		
6	228.42	517.49		
7	242.99	513.91		
8	257.66	510.77		
9	272.41	508.08		
10	287.24	505.84		
11	302.14	504.04		
12	317.08	502.69		
13	332.05	501.80		
14	347.04	501.36		
15	362.04	501.38		
16	377.04	501.84		
17	392.01	502.76		
18	406.94	504.14		
19	421.83	505.96		
20	436.66	508.24		
21	451.41	510.96		
22	466.07	514.12		
23	480.63	517.73		
24	495.08	521.77		
25	509.39	526.26		
26	523.57	531.17		
27	537.58	536.51		
28	551.43	542.26		

SECTION CC'
Block Failure Mode (Final Conditions)

Technique For Generating Sliding Block Surfaces, Has Been
Specified.
500 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions Of
Sliding Block Is
Box
No.
No.Left

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Janbu Method * * Failure Surface Specified By 27 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)

$\begin{array}{cc}(\mathrm{ft}) & (\mathrm{ft}) \\ 168.46 & 544.61\end{array}$
$169.11 \quad 544.25$
$176.27 \quad 537.27$
$247.10 \quad 513.27$
$595.86 \quad 516.15$
$602.45 \quad 523.67$
$609.20 \quad 531.05$
$615.67 \quad 538.67$
$622.70 \quad 545.78$
$629.19 \quad 553.40$
$635.54 \quad 561.12$
$642.52 \quad 568.28$
$649.59 \quad 575.35$
$656.02 \quad 583.01$
$\begin{array}{ll}659.26 & 592.47 \\ 665.86 & 599.99\end{array}$
$672.88 \quad 607.11$
$679.91 \quad 614.22$
$686.72 \quad 621.54$
$691.84 \quad 630.13$
$698.86 \quad 637.26$
$705.35 \quad 644.86$
$711.10 \quad 653.05$
$715.07 \quad 662.23$
$718.03 \quad 671.78$
$\begin{array}{ll}721.00 & 681.32 \\ 722.64 & 683.16\end{array}$
$\begin{array}{rr} & 722.64 \\ \text { *** } \\ \\ 1.635\end{array}$ ***

		Individual	on th Water Force	Water Force	$\begin{gathered} \text { slices } \\ \text { Tie } \\ \text { Force } \end{gathered}$	Tie Force	Earthquake Force		Surcharge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)							
1	0.6	20.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2.6	639.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4.2	2455.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.5	346.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	70.8	145380.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63	328.8	1895978.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	20.0	166815.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	3.5	29169.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	3.1	24910.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	6.7	52709.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	6.5	48311.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	7.0	50063.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Revision 0 5-A-78

12	670.84	578.62	
13	674.77	587.81	
14	681.83	594.89	
15	684.45	604.54	
16	691.38	611.75	
17	693.15	621.60	
18	700.22	628.67	
19	707.22	635.81	
20	713.33	643.72	
21	718.99	651.97	
22	719.68	661.94	
23	723.48	671.20	
24	730.55	678.27	
25	737.23	685.70	
26	737.86	686.96	
**	1.715		
Failure Surface Specified By 26 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	165.73	543.93	
2	171.22	538.51	
3	247.10	512.68	
4	622.81	515.85	
5	627.65	524.60	
6	634.71	531.69	
7	641.72	538.82	
8	645.01	548.26	
9	651.88	555.52	
10	658.43	563.08	
11	665.48	570.17	
12	670.84	578.62	
13	674.77	587.81	
14	681.83	594.89	
15	684.45	604.54	
16	691.38	611.75	
17	693.15	621.60	
18	700.22	628.67	
19	707.22	635.81	
20	713.33	643.72	
21	718.99	651.97	
22	719.68	661.94	
23	723.48	671.20	
24	730.55	678.27	
25	737.23	685.70	
26	737.86	686.96	
Failure Surface Specified By 28 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	162.66	543.16	
2	163.95	541.91	
3	173.95	541.85	
4	183.01	537.63	
5	191.11	531.76	
6	247.10	512.57	
7	642.88	516.05	
8	649.77	523.30	
9	656.51	530.69	
10	660.22	539.98	
11	666.56	547.71	
12	673.59	554.82	
13	678.76	563.38	
14	684.40	571.64	

15	688.40	580.80	
16	689.83	590.70	
17	696.19	598.42	
18	703.24	605.51	
19	704.95	615.36	
20	711.08	623.26	
21	717.30	631.09	
22	724.22	638.31	
23	728.24	647.47	
24	734.73	655.07	
25	740.88	662.96	
26	745.91	671.60	
27	748.06	681.37	
28	752.98	687.75	
***	1.732		
Failure Su	ace Spec	By 28	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	162.66	543.16	
2	163.95	541.91	
3	173.95	541.85	
4	183.01	537.63	
5	191.11	531.76	
6	247.10	512.57	
7	642.88	516.05	
8	649.77	523.30	
9	656.51	530.69	
10	660.22	539.98	
11	666.56	547.71	
12	673.59	554.82	
13	678.76	563.38	
14	684.40	571.64	
15	688.40	580.80	
16	689.83	590.70	
17	696.19	598.42	
18	703.24	605.51	
19	704.95	615.36	
20	711.08	623.26	
21	717.30	631.09	
22	724.22	638.31	
23	728.24	647.47	
24	734.73	655.07	
25	740.88	662.96	
26	745.91	671.60	
27	748.06	681.37	
28	752.98	687.75	
**	1.732		
Failure Su	ace Spec	By 28	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	162.66	543.16	
2	163.95	541.91	
3	173.95	541.85	
4	183.01	537.63	
5	191.11	531.76	
6	247.10	512.57	
7	642.88	516.05	
8	649.77	523.30	
9	656.51	530.69	
10	660.22	539.98	
11	666.56	547.71	
12	673.59	554.82	
13	678.76	563.38	

14	684.40	571.64	
15	688.40	580.80	
16	689.83	590.70	
17	696.19	598.42	
18	703.24	605.51	
19	704.95	615.36	
20	711.08	623.26	
21	717.30	631.09	
22	724.22	638.31	
23	728.24	647.47	
24	734.73	655.07	
25	740.88	662.96	
26	745.91	671.60	
27	748.06	681.37	
28	752.98	687.75	
**	1.732		
Failure Surface Specified By 27 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	165.79	543.95	
2	167.68	542.06	
3	176.34	537.06	
4	247.10	512.55	
5	698.25	516.20	
6	704.75	523.80	
7	711.77	530.93	
8	718.79	538.05	
9	725.79	545.19	
10	727.43	555.05	
11	731.83	564.03	
12	737.90	571.98	
13	744.96	579.07	
14	751.93	586.24	
15	757.91	594.25	
16	764.55	601.72	
17	769.29	610.53	
18	772.07	620.14	
19	778.93	627.41	
20	784.89	635.44	
21	790.29	643.86	
22	794.77	652.80	
23	798.75	661.98	
24	803.23	670.91	
25	808.47	679.43	
26	814.60	687.33	
27	816.22	690.90	
***	1.734		
Failure Surface Specified By 27 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	165.79	543.95	
2	167.68	542.06	
3	176.34	537.06	
4	247.10	512.55	
5	698.25	516.20	
6	704.75	523.80	
7	711.77	530.93	
8	718.79	538.05	
9	725.79	545.19	
10	727.43	555.05	
11	731.83	564.03	
12	737.90	571.98	
13	744.96	579.07	

Revision 0 5-A-82

14	751.93	586.24	
15	757.91	594.25	
16	764.55	601.72	
17	769.29	610.53	
18	772.07	620.14	
19	778.93	627.41	
20	784.89	635.44	
21	790.29	643.86	
22	794.77	652.80	
23	798.75	661.98	
24	803.23	670.91	
25	808.47	679.43	
26	814.60	687.33	
27	816.22	690.90	
***	1.734		
Failure Sur	ace Spec	By 27	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	165.79	543.95	
2	167.68	542.06	
3	176.34	537.06	
4	247.10	512.55	
5	698.25	516.20	
6	704.75	523.80	
7	711.77	530.93	
8	718.79	538.05	
9	725.79	545.19	
10	727.43	555.05	
11	731.83	564.03	
12	737.90	571.98	
13	744.96	579.07	
14	751.93	586.24	
15	757.91	594.25	
16	764.55	601.72	
17	769.29	610.53	
18	772.07	620.14	
19	778.93	627.41	
20	784.89	635.44	
21	790.29	643.86	
22	794.77	652.80	
23	798.75	661.98	
24	803.23	670.91	
25	808.47	679.43	
26	814.60	687.33	
27	816.22	690.90	
**	1.734		

SECTION DD'

Circular Failure Mode (Final Conditions)

3 1020.00 518.00

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
10000 Trial Surfaces Have Been Generated.
100 Surfaces Initiate From Each Of100 Points Equally Spaced
Along The Ground Surface Between $X=50.00 \mathrm{ft}$. and $x=200.00 \mathrm{ft}$.
Each Surface Terminates Between $\quad X=500.00 \mathrm{ft}$. and $\quad X=900.00 \mathrm{ft}$.
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is $Y=0.00 \mathrm{ft}$.
15.00 ft . Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * * Failure Surface Specified By 48 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	112.12	542.31

$1 \quad 112.12 \quad 542.31$
$2 \quad 126.07 \quad 536.79$
$3 \quad 140.16 \quad 531.65$
$4 \quad 154.39 \quad 526.89$
$5 \quad 168.73 \quad 522.50$
$6 \quad 183.19 \quad 518.50$

7	197.74	514.88

$8 \quad 212.39 \quad 511.64$

9	227.12	508.80

$10 \quad 241.92 \quad 506.34$

11	256.77	504.28
12	271.68	502.62

$12 \quad 271.68 \quad 502.62$
$13 \quad 286.63 \quad 501.35$
$14 \quad 301.60 \quad 500.47$
$15 \quad 316.59 \quad 499.99$
$16 \quad 331.59 \quad 499.91$
$17 \quad 346.59 \quad 500.23$
$361.57 \quad 500.95$
$376.53 \quad 502.06$
$391.46 \quad 503.57$
$406.34 \quad 505.47$
$421.16 \quad 507.76$
$435.92 \quad 510.45$
$450.60 \quad 513.53$
$465.19 \quad 516.99$
$479.69 \quad 520.84$
$494.08 \quad 525.08$
$508.35 \quad 529.69$
$522.50 \quad 534.68$
$536.51 \quad 540.04$
$550.37 \quad 545.77$
$564.07 \quad 551.87$
$577.61 \quad 558.33$
$590.97 \quad 565.14$
$604.15 \quad 572.31$
$617.14 \quad 579.82$
$629.91 \quad 587.68$
$642.48 \quad 595.87$
$654.83 \quad 604.38$
$666.94 \quad 613.23$
$678.82 \quad 622.39$
$690.45 \quad 631.86$
$701.83 \quad 641.64$
$712.94 \quad 651.72$
Revision 0 5-A-86

12	278.20	500.97		
13	293.14	499.61		
14	308.11	498.68		
15	323.11	498.20		
16	338.11	498.15		
17	353.10	498.54		
18	368.08	499.37		
19	383.02	500.63		
20	397.93	502.34		
21	412.77	504.47		
22	427.55	507.05		
23	442.25	510.05		
24	456.85	513.48		
25	471.35	517.33		
26	485.72	521.61		
27	499.97	526.30		
28	514.07	531.41		
29	528.02	536.93		
30	541.80	542.86		
31	555.40	549.18		
32	568.81	555.90		
33	582.02	563.01		
34	595.02	570.51		
35	607.79	578.37		
36	620.32	586.61		
37	632.61	595.22		
38	644.64	604.17		
39	656.41	613.48		
40	667.89	623.12		
41	679.10	633.10		
42	690.00	643.40		
43	700.60	654.01		
44	710.88	664.93		
45	720.85	676.15		
46	730.47	687.65		
47	731.49	688.94		
				513.1
Failure Surface Specified By 44 Coordinate Points				
Poin	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	116.67	543.44		
2	130.36	537.33		
3	144.25	531.65		
4	158.31	526.43		
5	172.53	521.66		
6	186.90	517.35		
7	201.40	513.50		
8	216.01	510.12		
9	230.72	507.20		
10	245.53	504.77		
11	260.40	502.80		
12	275.32	501.32		
13	290.29	500.32		
14	305.28	499.79		
15	320.28	499.75		
16	335.27	500.19		
17	350.25	501.11		
18	365.18	502.51		
19	380.06	504.38		
20	394.88	506.74		
21	409.61	509.56		
22	424.24	512.86		

Failure Surface Specified By 46 Coordinate Points
Point X-Surf Y-Surf

No. 2
3
4
5
6
8
9
10
11
14

X-Su
$(f t)$
(ft)
$116.67 \quad 543.44$
$130.31 \quad 537.22$
$144.15 \quad 531.41$
$158.15 \quad 526.04$
$172.31 \quad 521.09$
186.62516 .58
$201.05 \quad 512.50$
$215.61 \quad 508.88$
$230.27 \quad 505.70$
$245.01 \quad 502.96$
$259.84 \quad 500.69$
$274.73 \quad 498.86$
$289.67 \quad 497.49$
$304.64 \quad 496.58$
$319.63 \quad 496.13$
$334.63 \quad 496.14$
$349.62 \quad 496.61$
$364.60 \quad 497.53$
$379.53 \quad 498.91$
$394.42 \quad 500.75$
$409.24 \quad 503.05$
$423.99 \quad 505.79$
$438.65 \quad 508.99$
$453.20 \quad 512.63$
$467.63 \quad 516.72$
$481.93 \quad 521.24$
$496.09 \quad 526.20$
$510.08 \quad 531.60$
$523.91 \quad 537.41$
$537.55 \quad 543.65$
$550.99 \quad 550.30$
$564.23 \quad 557.37$
$577.24 \quad 564.83$
$590.02 \quad 572.68$
$602.55 \quad 580.93$
$614.82 \quad 589.55$

Point	X-Surf	Y-Surf
1	115.15	543.06
2	129.13	537.61
3	143.24	532.54
4	157.49	527.86
5	171.86	523.56
6	186.35	519.66
7	200.93	516.15
8	215.61	513.04
9	230.36	510.33
10	245.18	508.03
11	260.06	506.13
12	274.99	504.63
13	289.95	503.54
14	304.93	502.86
15	319.93	502.58
16	334.93	502.71
17	349.92	503.25
18	364.89	504.20
19	379.83	505.56
20	394.72	507.32
21	409.57	509.49
22	424.34	512.05
23	439.05	515.02
24	453.66	518.39
25	468.18	522.16
26	482.60	526.32
27	496.89	530.87
28	511.05	535.80
29	525.08	541.12
30	538.95	546.82
31	552.67	552.90
32	566.21	559.34
33	579.58	566.15
34	592.75	573.32
35	605.73	580.85
36	618.49	588.73
37	631.04	596.95
38	643.35	605.51
39	655.43	614.41
40	667.27	623.62
41	678.85	633.16
42	690.16	643.01
43	701.20	653.16
44	711.96	663.61
45	722.44	674.35
46	732.62	685.37

```
Circle Center At X = 322.5 ; Y = 1054.0 and Radius, 551.4
```

*** 2.786 ***
Failure Surface Specified By 46 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	116.67	543.44
2	130.19	536.96
3	143.92	530.90
4	157.83	525.28
5	171.90	520.11
6	186.14	515.37
7	200.51	511.09
8	215.01	507.25
9	229.63	503.88

SECTION DD ${ }^{\prime}$

Block Failure Mode (Final Conditions)

500 Trial Surfaces Have Been Generated.
3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portions of
Sliding Block Is
Box
Blo.0
No.
X-Left
Failure Surfaces Examined. They Are Ordered - Most Critical
First.
* * Safety Factors Are Calculated By The Modified Janbu Method * *
Failure Surface Specified By 28 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	115.49	543.15
2	118.28	542.23
3	128.05	540.10
4	137.04	535.72
5	211.21	511.11
6	595.28	515.82
7	598.73	525.21
8	602.59	534.43
9	609.66	541.51
10	616.72	548.59
11	622.85	556.49
12	629.84	563.64
13	636.17	571.39
14	643.23	578.46
15	650.24	585.60
16	654.72	594.54
17	659.37	603.39
18	664.80	611.79
19	669.53	620.60
20	676.60	627.67
21	681.80	636.21
22	688.55	643.59
23	692.83	652.63
24	699.90	659.70
25	701.31	669.60
26	702.23	679.56
27	709.30	686.63
28	710.36	687.93
	$* * *$	1.692

3	135.29	535.79	
4	211.67	511.05	
5	583.26	515.66	
6	587.34	524.79	
7	592.53	533.34	
8	597.88	541.79	
9	604.84	548.97	
10	608.19	558.39	
11	614.21	566.38	
12	620.15	574.42	
13	624.75	583.30	
14	630.72	591.32	
15	634.47	600.59	
16	640.93	608.23	
17	647.01	616.16	
18	652.77	624.34	
19	659.66	631.59	
20	660.42	641.56	
21	667.16	648.94	
22	671.85	657.78	
23	676.95	666.38	
24	684.00	673.47	
25	685.92	683.28	
26	687.42	686.16	
***	* 1.710		
Failure Surface Specified By 26 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	118.92	544.01	
2	125.50	537.82	
3	135.29	535.79	
4	211.67	511.05	
5	583.26	515.66	
6	587.34	524.79	
7	592.53	533.34	
8	597.88	541.79	
9	604.84	548.97	
10	608.19	558.39	
11	614.21	566.38	
12	620.15	574.42	
13	624.75	583.30	
14	630.72	591.32	
15	634.47	600.59	
16	640.93	608.23	
17	647.01	616.16	
18	652.77	624.34	
19	659.66	631.59	
20	660.42	641.56	
21	667.16	648.94	
22	671.85	657.78	
23	676.95	666.38	
24	684.00	673.47	
25	685.92	683.28	
26	687.42	686.16	
*** 1.710 ***			
Failure Surface Specified By 26 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	118.92	544.01	
2	125.50	537.82	
3	135.29	535.79	
4	211.67	511.05	
5	583.26	515.66	

6	587.34	524.79	
7	592.53	533.34	
8	597.88	541.79	
9	604.84	548.97	
10	608.19	558.39	
11	614.21	566.38	
12	620.15	574.42	
13	624.75	583.30	
14	630.72	591.32	
15	634.47	600.59	
16	640.93	608.23	
17	647.01	616.16	
18	652.77	624.34	
19	659.66	631.59	
20	660.42	641.56	
21	667.16	648.94	
22	671.85	657.78	
23	676.95	666.38	
24	684.00	673.47	
25	685.92	683.28	
26	687.42	686.16	
***	1.710		
Failure Su	ace Spec	By 26	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	118.92	544.01	
2	125.50	537.82	
3	135.29	535.79	
4	211.67	511.05	
5	583.26	515.66	
6	587.34	524.79	
7	592.53	533.34	
8	597.88	541.79	
9	604.84	548.97	
10	608.19	558.39	
11	614.21	566.38	
12	620.15	574.42	
13	624.75	583.30	
14	630.72	591.32	
15	634.47	600.59	
16	640.93	608.23	
17	647.01	616.16	
18	652.77	624.34	
19	659.66	631.59	
20	660.42	641.56	
21	667.16	648.94	
22	671.85	657.78	
23	676.95	666.38	
24	684.00	673.47	
25	685.92	683.28	
26	687.42	686.16	
***	1.710		

SECTION EE'

Circular Failure Mode (Final Conditions)

ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil							
Soil Total Saturated Cohesion				Friction	Pore	Pressure	Piez.
Type Unit W		. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	128.0	128.0	0.0	25.0	0.00	0.0	1
2	120.0	120.0	200.0	20.0	0.00	0.0	1
3	60.0	60.0	200.0	32.0	0.00	0.0	1
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED							
Unit	Weight	of Water =	62.40				
Piezometric Surface No. 1 Specified by 4 Coordinate Points							
Pol	int	Surface No. 1 Specified by 4 Coordinate PointsX-WaterY-Water					
No	o.	(ft)	(ft)				
	1	0.00	513.00				
	2	250.00	513.00				
	3	500.00	513.00				
	4	1012.00	523.00				
A Critical Failure Surface Searching Method, Using A Random							
Technique For Generating Circular Surfaces, Has Been Specified.							
10000 Trial Surfaces Have Been Generated.							
100 Surfaces Initiate From Each Of100 Points Equally Spaced							
Along The Ground Surface Between $X=50.00 \mathrm{ft}$.							
Each Surface			and	d $=200$	00 ft .		
		Terminate	Between	$x=400$.00 ft .		
		and		$X=700$	00 ft .		
Unless Further Limitations Were Imposed, The Minimum Elevation							
At Which A Surface Extends Is $Y=0.00 \mathrm{ft}$.							
$10.00 \mathrm{ft}$. Line Segments Define Each Trial Failure Surface.							
Following Are Displayed The Ten Most Critical Of The Trial							
Failure Surfaces Examined. They Are Ordered - Most Critical							
* * Safety Factors Are Calculated By The Modified Bishop Method							
Point X -S			urf Y	-Surf			
No. ((ft)			
$1 \quad 17$. $79 \quad 5$	541.34			
218			. $89 \quad 53$	537.20			
319			. 10 5	533.30			
420			. 40 5	529.62			
$5 \quad 21$. $79 \quad 5$	26.19			
6 22			. 26 5	522.99			
$7 \quad 234$. $82 \quad 5$	20.03			
8 244			. $44 \quad 51$	17.31			
925			. $13 \quad 5$	514.83			
10 263			.88 5	512.60			
11 27			. 68 5	510.62			
12 28			. $53-5$	508.88			
13 293			. 415	507.39			
14 303			. 345	506.16			
15 31			. 295	505.17			
16			. $26 \quad 5$	504.43			
17 33			. $25 \quad 5$	503.95			
18 34			. $25 \quad 5$	503.71			
19 353			. $25 \quad 5$	503.73			
20 36			. 245	504.00			
21 37			. $23-5$	504.53			
22 38			. 205	505.30			
23 39			. 15	506.33			
24 403			. 065	507.60			
25 41			. $95 \quad 5$	509.13			
26 42			. $79 \quad 5$	510.90			
27 43			. 58 5	512.92			
28		442	. 325	515.19			

Revision 0 5-A-106

29	452.00	517.70
30	461.62	520.45
31	471.16	523.45
32	480.62	526.68
33	490.00	530.16
34	499.28	533.87
35	508.47	537.81
36	517.56	541.98
37	526.54	546.38
38	535.41	551.00
39	544.16	555.85
40	552.78	560.91
41	561.27	566.19
42	569.63	571.68
43	577.84	577.39
44	585.91	583.29
45	593.83	589.40
46	601.59	595.71
47	609.19	602.21
48	616.62	608.89
49	623.89	615.77
50	630.98	622.82
51	637.88	630.05
52	644.61	637.46
53	651.14	645.03
54	657.00	652.17
Cir		

Circle Center At $X=347.5 ; Y=900.5$ and Radius, 396.8

31	9.9	60218.3	0.0	3767.2	0.0	0.0	0.0	0.0	0.0
32	9.9	59670.4	0.0	2893.5	0.0	0.0	0.0	0.0	0.0
33	9.8	58767.9	0.0	1864.5	0.0	0.0	0.0	0.0	0.0
34	7.4	43643.3	0.0	631.2	0.0	0.0	0.0	0.0	0.0
35	2.4	13878.0	0.0	49.4	0.0	0.0	0.0	0.0	0.0
36	0.3	2009.1	0.0	0.9	0.0	0.0	0.0	0.0	0.0
37	6.0	34451.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	3.4	19677.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39	9.7	55532.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	4.9	28060.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	4.7	26964.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42	9.5	54329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	9.5	53454.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
44	9.4	52408.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	9.3	51195.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	9.2	49821.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47	9.1	48295.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48	9.0	46623.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	8.9	44813.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	8.7	42875.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51	8.6	40817.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
52	8.5	38648.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	8.4	36380.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
54	8.2	34023.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55	8.1	31588.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
56	7.9	29086.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
57	7.8	26529.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
58	7.6	23929.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
59	4.5	13176.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60	2.9	8071.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61	7.3	18084.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
62	7.1	14841.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63	6.9	11650.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64	6.7	8527.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65	6.5	5484.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66	2.8	1488.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67	3.0	636.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Failure Surface Specified By 54 Coordinate Points									
	PointNo.		-Surf	Y-Surf					
			(ft)	(ft)					
	1		172.73	539.78					
	2181.93			535.86					
	191.22								
	$4 \quad 200.60$			532.17528.71					528.71
	$5 \quad 210.06$			525.47					
	$6 \quad 219.60$			522.47					
	$7 \quad 229.21$			519.71					
	$8 \quad 238.89$			517.18					
	$9 \quad 248.62$			514.89					
	$10 \quad 258.41$			512.84					
	11 268.25			511.03					
	$12 \quad 278.12$			509.46					
	$13 \quad 288.03$			508.14					
	$14 \quad 297.98$			507.05					
	$15 \quad 307.94$			506.22					
	$16 \quad 317.92$			505.62					
	$17 \quad 327.92$			505.28					
	$18 \quad 337.92$			505.17					
	$19 \quad 347.92$			505.32					
	$20 \quad 357.91$			505.70					
			367.89	506.34					
			377.85						
			387.79	507.21508.34					

SECTION EE'

Block Failure Mode (Final Conditions)

\begin{tabular}{|c|c|c|c|c|c|c|}

\hline \multicolumn{7}{|c|}{| ** PCSTABL5M3 ** |
| :--- |
| by Purdue University 1985 |
| rev. for SCS Engineers HVA 2008 |
| --Slope Stability Analysis-- |
| implified Janbu, Simplified Bishop |
| or Spencer`s Method of Slices |}

\hline \multicolumn{7}{|l|}{Run Date: 4/19/2019}

\hline \multicolumn{7}{|l|}{Time of Run: 12:18PM}

\hline \multicolumn{7}{|l|}{Run By: Username}

\hline \multicolumn{7}{|l|}{Input Data Filename: M:waco xs e - block.}

\hline \multicolumn{7}{|l|}{Output Filename: M:waco xs e - block.OUT}

\hline \multicolumn{7}{|l|}{Unit: ENGLISH}

\hline \multicolumn{7}{|l|}{Plotted Output Filename: M:waco xs e - block.PLT}

\hline \multicolumn{7}{|l|}{PROBLEM DESCRIPTION Waco Landfill}

\hline \& \& ross-Sect \& on E-Bloc \& \& \&

\hline \multicolumn{7}{|l|}{BOUNDARY COORDINATES}

\hline \multicolumn{7}{|l|}{Note: User origin value specified.}

\hline \multicolumn{7}{|l|}{Add 0.00 to X -values and 0.00 to Y -values listed.}

\hline 13 Top \& Boundaries \& \& \& \& \&

\hline 28 Total \& Boundaries \& \& \& \& \&

\hline Boundary \& X-Left \& Y-Left \& X-Right \& Y-Rig \& \& Type

\hline No. \& (ft) \& (ft) \& (ft) \& (ft) \& Belo \& w Bnd

\hline 1 \& 0.00 \& 528.90 \& 123.40 \& 528. \& \& 1

\hline 2 \& 123.40 \& 528.90 \& 143.10 \& 535. \& \& 1

\hline 3 \& 143.10 \& 535.50 \& 149.40 \& 537. \& \& 1

\hline 4 \& 149.40 \& 537.60 \& 150.80 \& 538. \& \& 2

\hline 5 \& 150.80 \& 538.00 \& 165.80 \& 538. \& \& 2

\hline 6 \& 165.80 \& 538.00 \& 186.80 \& 543. \& \& 2

\hline 7 \& 186.80 \& 543.40 \& 253.60 \& 560. \& \& 2

\hline 8 \& 253.60 \& 560.00 \& 273.60 \& 565. \& \& 2

\hline 9 \& 273.60 \& 565.00 \& 456.90 \& 610. \& \& 2

\hline 10 \& 456.90 \& 610.80 \& 613.70 \& 650. \& \& 2

\hline 11 \& 613.70 \& 650.00 \& 811.00 \& 659. \& \& 2

\hline 12 \& 811.00 \& 659.90 \& 839.10 \& 661. \& \& 2

\hline 13 \& 839.10 \& 661.30 \& 1012.30 \& 655. \& \& 2

\hline 14 \& 165.80 \& 538.00 \& 186.80 \& 539. \& \& 2

\hline 15 \& 186.80 \& 539.60 \& 253.60 \& 556. \& \& 3

\hline 16 \& 253.60 \& 556.40 \& 273.60 \& 561. \& \& 3

\hline 17 \& 273.60 \& 561.40 \& 456.90 \& 607. \& \& 3

\hline 18 \& 456.90 \& 607.10 \& 613.70 \& 646. \& \& 3

\hline 19 \& 613.70 \& 646.50 \& 811.00 \& 656. \& \& 3

\hline 20 \& 811.00 \& 656.30 \& 839.10 \& 657. \& \& 3

\hline 21 \& 839.10 \& 657.70 \& 1012.30 \& 652. \& \& 3

\hline 22 \& 149.40 \& 537.60 \& 186.80 \& 537. \& \& 1

\hline 23 \& 186.80 \& 537.60 \& 253.60 \& 515. \& \& 4

\hline 24 \& 253.60 \& 515.30 \& 456.90 \& 514. \& \& 5

\hline 25 \& 456.90 \& 514.30 \& 613.70 \& 519. \& \& 5

\hline 26 \& 613.70 \& 519.70 \& 811.00 \& 526. \& \& 5

\hline 27 \& 811.00 \& 526.50 \& 839.10 \& 526. \& \& 5

\hline 28 \& 839.10 \& 526.30 \& 1012.30 \& 525. \& \& 5

\hline \multicolumn{7}{|l|}{ISOTROPIC SOIL PARAMETERS}

\hline \multicolumn{7}{|l|}{5 Type(s) of Soil}

\hline Soil Total \& Saturated \& Cohesion \& Friction \& Pore \& Pressure \& Piez.

\hline Type Unit Wt \& t. Unit Wt. \& Intercept \& Angle \& Pressure \& Constant \& Surface

\hline No. (pcf) \& (pcf) \& (psf) \& (deg) \& Param. \& (psf) \& No.

\hline 1128.0 \& 128.0 \& 0.0 \& 25.0 \& 0.00 \& 0.0 \& 1

\hline 2120.0 \& 120.0 \& 200.0 \& 20.0 \& 0.00 \& 0.0 \& 1

\hline 360.0 \& 60.0 \& 200.0 \& 32.0 \& 0.00 \& 0.0 \& 1

\hline 4100.0 \& 100.0 \& 0.0 \& 15.0 \& 0.00 \& 0.0 \& 1

\hline 5100.0 \& 100.0 \& 0.0 \& 11.0 \& 0.00 \& 0.0 \& 1

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1 PIEZOMETRIC SURFACE (S)
Unit Weight of Water $=$}} \&) HAVE BEE \& \multicolumn{2}{|l|}{, SPECIFIED} \& \&

\hline \& \& 62.40 \& \& \& \&

\hline
\end{tabular}

Piezometric Surface No. 1 Specified by 4 Coordinate Points					
Point X-Water Y-Wa					
No. (f					
$0.00 \quad 513.00$					
2	250.00	513.00			
3	500.00	513.00			
4	1012.00	523.00			
A Critical Failure Surface Searching Method, Using A Random					
Technique For Generating Sliding Block Surfaces, Has Been					
Specified.					
500 Trial Surfaces Have Been Generated.					
3 Boxes Specified For Generation Of Central Block Base					
Length Of Line Segments For Active And Passive Portions Of					
Sliding Block Is 5.0					
Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	186.70	537.00	200.00	532.00	1.00
2	253.60	514.30	253.60	514.00	1.00
3	456.90	513.00	800.00	525.50	1.00

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Janbu Method * * Failure Surface Specified By 37 Coordinate Points
Point X-Surf Y-Surf

No.	(ft)	(ft)
1	179.33	541.48

$179.33 \quad 541.48$
$179.41 \quad 541.44$
$182.97 \quad 537.92$
$187.72 \quad 536.35$
$253.60 \quad 514.56$
$484.10 \quad 513.61$
$486.49 \quad 518.00$
$488.79 \quad 522.44$
$492.10 \quad 526.19$
$494.95 \quad 530.29$
$497.86 \quad 534.36$
$500.05 \quad 538.86$
$503.45 \quad 542.52$
$506.59 \quad 546.42$
$509.61 \quad 550.40$
$512.02 \quad 554.78$
$514.25 \quad 559.25$
$517.78 \quad 562.80$
$521.16 \quad 566.48$
$524.56 \quad 570.15$
$527.84 \quad 573.92$
$531.12 \quad 577.69$
$533.25 \quad 582.22$
$536.59 \quad 585.94$
$537.08 \quad 590.91$
$538.28 \quad 595.77$
$541.20 \quad 599.82$
$544.06 \quad 603.93$
$547.32 \quad 607.72$
$550.35 \quad 611.69$
$553.53 \quad 615.55$
$555.89 \quad 619.96$
$559.35 \quad 623.57$
$560.80 \quad 628.36$
$564.31 \quad 631.92$
$567.32 \quad 635.91$
$570.22 \quad 639.13$
1.822 ***

12	500.05	538.86		
13	503.45	542.52		
14	506.59	546.42		
15	509.61	550.40		
16	512.02	554.78		
17	514.25	559.25		
18	517.78	562.80		
19	521.16	566.48		
20	524.56	570.15		
21	527.84	573.92		
22	531.12	577.69		
23	533.25	582.22		
24	536.59	585.94		
25	537.08	590.91		
26	538.28	595.77		
27	541.20	599.82		
28	544.06	603.93		
29	547.32	607.72		
30	550.35	611.69		
31	553.53	615.55		
32	555.89	619.96		
33	559.35	623.57		
34	560.80	628.36		
35	564.31	631.92		
36	567.32	635.91		
37	570.22	639.13		
	$* * *$	1.822	***	**
:---				

Failure Surface Specified By 37 Coordinate Points
Point X-Surf Y-Surf

No
2
3
4
5
6
7
8
9
10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 $33 \quad 559.35$
(ft)
541.48
541.44
537.92
536.35
514.56
513.61
518.00
522.44
526.19
530.29
534.36
538.86
542.52
546.42
550.40
554.78
559.25
562.80
566.48
570.15
573.92
577.69
582.22
585.94
590.91
595.77
599.82
603.93
607.72
611.69
615.55
619.96
623.57

34	560.80	628.36	
35	564.31	631.92	
36	567.32	635.91	
37	570.22	639.13	
***	1.822		
Failure Su	ace Spec	By 37	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	179.33	541.48	
2	179.41	541.44	
3	182.97	537.92	
4	187.72	536.35	
5	253.60	514.56	
6	484.10	513.61	
7	486.49	518.00	
8	488.79	522.44	
9	492.10	526.19	
10	494.95	530.29	
11	497.86	534.36	
12	500.05	538.86	
13	503.45	542.52	
14	506.59	546.42	
15	509.61	550.40	
16	512.02	554.78	
17	514.25	559.25	
18	517.78	562.80	
19	521.16	566.48	
20	524.56	570.15	
21	527.84	573.92	
22	531.12	577.69	
23	533.25	582.22	
24	536.59	585.94	
25	537.08	590.91	
26	538.28	595.77	
27	541.20	599.82	
28	544.06	603.93	
29	547.32	607.72	
30	550.35	611.69	
31	553.53	615.55	
32	555.89	619.96	
33	559.35	623.57	
34	560.80	628.36	
35	564.31	631.92	
36	567.32	635.91	
37	570.22	639.13	
***	1.822		
Failure Su	ace Spec	d By 37	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	179.33	541.48	
2	179.41	541.44	
3	182.97	537.92	
4	187.72	536.35	
5	253.60	514.56	
6	484.10	513.61	
7	486.49	518.00	
8	488.79	522.44	
9	492.10	526.19	
10	494.95	530.29	
11	497.86	534.36	
12	500.05	538.86	
13	503.45	542.52	
14	506.59	546.42	

15	509.61	550.40
16	512.02	554.78
17	514.25	559.25
18	517.78	562.80
19	521.16	566.48
20	524.56	570.15
21	527.84	573.92
22	531.12	577.69
23	533.25	582.22
24	536.59	585.94
25	537.08	590.91
26	538.28	595.77
27	541.20	599.82
28	544.06	603.93
29	547.32	607.72
30	550.35	611.69
31	553.53	615.55
32	555.89	619.96
33	559.35	623.57
34	560.80	628.36
35	564.31	631.92
36	567.32	635.91
37	570.22	639.13
	***	1.822

Failure Surface Specified By 36 Coordinate Points
Point X-Surf Y-Surf

No. 2
(f
(ft)
178.49
$181.83 \quad 539.48$
$185.44 \quad 536.02$
$190.43 \quad 535.77$
$253.60 \quad 514.13$
$473.72 \quad 513.11$
$477.14 \quad 516.76$
$480.04 \quad 520.83$
$483.47 \quad 524.47$
$485.28 \quad 529.13$
$488.81 \quad 532.67$
$491.93 \quad 536.58$
$495.34 \quad 540.23$
$498.83 \quad 543.82$
$502.29 \quad 547.43$
$505.17 \quad 551.51$
$505.49 \quad 556.50$
$507.93 \quad 560.87$
$510.90 \quad 564.89$
$513.75 \quad 569.00$
$517.18 \quad 572.64$
$518.30 \quad 577.51$
$520.83 \quad 581.82$
$524.30 \quad 585.42$
$526.44 \quad 589.94$
$528.66 \quad 594.42$
$531.92 \quad 598.21$
$535.26 \quad 601.94$
$538.76 \quad 605.51$
$540.49 \quad 610.20$
$543.53 \quad 614.17$
$546.16 \quad 618.42$
$549.44 \quad 622.19$
$550.29 \quad 627.12$
$552.62 \quad 631.54$
$553.92 \quad 635.06$

Failure Surface Specified By 35 Coordinate Points Point X-Surf Y-Surf

No.	(ft)	(ft)
1	180.21	541.70

183.11538 .82
$187.77 \quad 537.01$
$192.18 \quad 534.64$
$253.60 \quad 513.99$
$467.85 \quad 513.76$
$470.64 \quad 517.91$
$474.11 \quad 521.50$
$476.84 \quad 525.69$
$480.14 \quad 529.45$
$481.08 \quad 534.36$
$482.90 \quad 539.02$
$485.93 \quad 542.99$
$488.93 \quad 546.99$
$490.72 \quad 551.66$
$494.23 \quad 555.22$
$497.69 \quad 558.84$
$501.07 \quad 562.52$
$502.32 \quad 567.36$
$505.86 \quad 570.90$
$508.51 \quad 575.13$
$511.41 \quad 579.21$
$512.15 \quad 584.15$
$515.51 \quad 587.85$
$518.85 \quad 591.57$
$519.86 \quad 596.47$
$521.74 \quad 601.10$
$524.46 \quad 605.30$
$527.97 \quad 608.86$
$531.41 \quad 612.49$
$534.95 \quad 616.03$
$537.42 \quad 620.37$
$538.88 \quad 625.15$
$542.32 \quad 628.78$
544.82 *** 632.78

Failure Surface Specified By 35 Coordinate Points
Point X-Surf Y-Surf

No 1 2 3

5
6
7
8
9
10
11 12 13 14 15 16 17 18 19 20
$\begin{array}{cc}\text { X-Surf } & Y-\text { Surf } \\ (\mathrm{ft}) & (\mathrm{ft}) \\ 180.21 & 541.70\end{array}$
$180.21 \quad 541.70$
$183.11 \quad 538.82$
$187.77 \quad 537.01$
$192.18 \quad 534.64$
$153.60 \quad 513.99$
$467.85 \quad 513.76$
$470.64 \quad 517.91$
$474.11 \quad 521.50$
$476.84 \quad 525.69$
$480.14 \quad 529.45$
$481.08 \quad 534.36$
$482.90 \quad 539.02$
$485.93 \quad 542.99$
$488.93 \quad 546.99$
$490.72 \quad 551.66$
$494.23 \quad 555.22$
$497.69 \quad 558.84$
$501.07 \quad 562.52$
$502.32 \quad 567.36$
$505.86 \quad 570.90$

21	508.51	575.13	
22	511.41	579.21	
23	512.15	584.15	
24	515.51	587.85	
25	518.85	591.57	
26	519.86	596.47	
27	521.74	601.10	
28	524.46	605.30	
29	527.97	608.86	
30	531.41	612.49	
31	534.95	616.03	
32	537.42	620.37	
33	538.88	625.15	
34	542.32	628.78	
35	544.82	632.78	
***	1.926		
Failure Surface Specified By 35 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	180.21	541.70	
2	183.11	538.82	
3	187.77	537.01	
4	192.18	534.64	
5	253.60	513.99	
6	467.85	513.76	
7	470.64	517.91	
8	474.11	521.50	
9	476.84	525.69	
10	480.14	529.45	
11	481.08	534.36	
12	482.90	539.02	
13	485.93	542.99	
14	488.93	546.99	
15	490.72	551.66	
16	494.23	555.22	
17	497.69	558.84	
18	501.07	562.52	
19	502.32	567.36	
20	505.86	570.90	
21	508.51	575.13	
22	511.41	579.21	
23	512.15	584.15	
24	515.51	587.85	
25	518.85	591.57	
26	519.86	596.47	
27	521.74	601.10	
28	524.46	605.30	
29	527.97	608.86	
30	531.41	612.49	
31	534.95	616.03	
32	537.42	620.37	
33	538.88	625.15	
34	542.32	628.78	
35	544.82	632.78	
*** 1.926 ***			
Failure Surface Specified By 35 Coordinate Points			
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	180.21	541.70	
2	183.11	538.82	
3	187.77	537.01	
4	192.18	534.64	
5	253.60	513.99	

6	467.85	513.76
7	470.64	517.91
8	474.11	521.50
9	476.84	525.69
10	480.14	529.45
11	481.08	534.36
12	482.90	539.02
13	485.93	542.99
14	488.93	546.99
15	490.72	551.66
16	494.23	555.22
17	497.69	558.84
18	501.07	562.52
19	502.32	567.36
20	505.86	570.90
21	508.51	575.13
22	511.41	579.21
23	512.15	584.15
24	515.51	587.85
25	518.85	591.57
26	519.86	596.47
27	521.74	601.10
28	524.46	605.30
29	527.97	608.86
30	531.41	612.49
31	534.95	616.03
32	537.42	620.37
33	538.88	625.15
34	542.32	628.78
35	544.82	632.78

APPENDIX 5B

- Veneer Stability Analysis - Liner System
- Veneer Stability Analysis - Final Cover System

SCS Engineers

TBPE Reg. \# F-3407
Inclusive of Pages 5-B-1 to 5-B-13

VENEER STABILITY ANALYSES

LINER SYSTEM

LINER STABILITY CALCULATION (SEEPAGE FORCES)

Veneer (Liner) System Stability

Project: City of Waco Landfill
Location: McLennan and Limestone Counties, TX
Prepared by: SCS ENGINEERS
Date: February 12, 2019
Consideration: To evaluate the stability of the cover system with seepage forces applied using the method described by Koerner and Soong (1998) referenced below.

Ref.: R.M. Koerner, and T-Y.Soong, 1998. "Analysis and Design of Veneer Cover Soils". Proceeding of 6th International Conference on Geosynthetics, Vol. 1, pp. 1-23, Atlanta, Georgia, USA.

Parameters:

DLC	$=$	drainage layer capacity
$\mathrm{FLUX}_{\text {allow }}$	$=$	allowable flow rate of the drainage layer per unit width of slope
k_{d}	$=$	permeability of drainage soil or geosynthetic
h_{d}	$=$	thickness of the drainage soil or geosynthetic
i	$=$	$\sin \beta=$ slope gradient
FLUX $_{\text {req'd }}$	$=$	actual flow rate per unit width of slope
PERC	=	the rate of percolation
P	$=$	probable maximum (hourly) precipitation (25-year storm event)
RC	=	runoff coefficient
L	=	length of drainage slope
k_{cs}	=	permeability of cover soil
β	=	slope angle
w	$=$	1.0 m = unit width of drainage slope
PSR	=	parallel submergence ratio
$\mathrm{h}_{\text {avg }}$	$=$	average head buildup above the geomembrane
$\mathrm{h}_{\text {cs }}$	$=$	thickness of cover soil
FS	$=$	factor of safety against instability
$\mathrm{W}_{\text {A }}$	$=$	total weight of the active wedge
W_{P}	$=$	total weight of the passive wedge
U_{h}	$=$	resultant of the pore pressures acting on the interwedge surfaces
U_{n}	$=$	resultant of the pore pressures acting perpendicular to the slope
U_{v}	$=$	resultant of the vertical pore pressures acting on the passive wedge
N_{A}	$=$	effective force normal to the failure plane of the active wedge
h	=	thickness of the cover soil
H	=	vertical height of the slope measured from the toe
h_{w}	$=$	$(\mathrm{PSR})(\mathrm{h})=$ height of the free water surface measured from the geomembrane
$\gamma_{\text {dry }}$	$=$	dry unit weight of the cover soil
$\gamma_{\text {sat'd }}$	$=$	saturated unit weight of the cover soil
γ_{w}	=	unit weight of water
ϕ	$=$	cover soil friction angle
δ	$=$	interface friction angle between cover soil and geomembrane

LINER STABILITY CALCULATION (SEEPAGE FORCES)

Calculate Drainage Layer Capacity (DLC):

```
PERC = P(1-RC), for P(1-RC) \leq k cs
PERC = k cs , for P(1-RC) > kcs
\begin{tabular}{rl}
\(\mathrm{k}_{\mathrm{CS}}\) & \(=1.00 \mathrm{E}-05 \mathrm{~cm} / \mathrm{s} \quad=3.60 \mathrm{E}-01 \mathrm{~mm} / \mathrm{hr}\) \\
P & \(=\)\begin{tabular}{rl}
8.40 \\
\(\mathrm{~mm} / \mathrm{hr}\) \\
RC & \(=\) \\
\hline 0.40
\end{tabular}
\end{tabular}
    P(1-RC) = 5.04 mm/hr
    PERC = 0.36 mm/hr
FLUX req'd
        1000
```



```
    L(\operatorname{cos}\beta)= 43.64m
    FLUX }\mp@subsup{\mathrm{ req'd}}{\mathrm{ d}}{=}\quad0.02 m/hr
    FLUX allow }=\mp@subsup{k}{d}{}\times\mp@subsup{\textrm{i}}{<}{}\mp@subsup{\textrm{h}}{\textrm{d}}{
\begin{tabular}{rlr}
\(\mathrm{k}_{\mathrm{d}}\) & \(=4.00 \mathrm{E}+00 \mathrm{~cm} / \mathrm{s}\) & \(=\) \\
\(\mathrm{h}_{\mathrm{d}}\) & \(=4.00 \mathrm{E}-02 \mathrm{~m} / \mathrm{s}\) \\
i & \(=0.35 \mathrm{~mm}\) & \(=0.01 \mathrm{~m}\) \\
i & 0.32
\end{tabular}
    FLUXXallow}=\quad0.29 m m/hr
DLC = FLUXX 
    DLC = 18.41
```

Notes:

1) If only one soil layer above geomembrane, treat it as a drainage layer.
2) DLC needs to be greater than one to avoid saturation of the drainage layer.

Calculate Parallel Submergence Ratio (PSR):

Calculate Factor of Safety (FS):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=\chi_{\underline{d r y}}\left(\mathrm{~h}-\mathrm{h}_{\underline{w}}\right)\left[2 \mathrm{H} \cos \beta-\left(\mathrm{h}+\mathrm{h}_{\underline{w}}\right)\right]+\gamma_{\operatorname{sat} \mathrm{d}}\left(\mathrm{~h}_{\underline{w}}\right)\left(2 \mathrm{H} \cos \beta-\mathrm{h}_{\underline{w}}\right) \\
& \sin 2 \beta
\end{aligned}
$$

$$
\begin{aligned}
& h=h_{d}+h_{c s}=616.35 \mathrm{~mm} \quad=\quad 0.62 \mathrm{~m} \\
& \mathrm{~h}_{\mathrm{w}}=0.34 \mathrm{~mm} \quad=0.00 \mathrm{~m} \\
& H=L \times \sin \beta=14.55 \mathrm{~m} \\
& \mathrm{~W}_{\mathrm{A}}=498.96 \mathrm{kN} \\
& U_{h}=\gamma_{\underline{w}} \frac{\left(h_{w} \underline{2}\right)^{2}}{2} \\
& \gamma_{w}=\quad 9.81 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{U}_{\mathrm{h}}=\quad 0.00 \mathrm{kN} \\
& U_{n}=\chi_{\underline{w}}\left(h_{\underline{w}}\right)(\cos \beta)\left(2 H \cos \beta-h_{\underline{w}}\right) \\
& \mathrm{U}_{\mathrm{n}}=\quad 0.15 \mathrm{kN}
\end{aligned}
$$

$\mathrm{N}_{\mathrm{A}}=\mathrm{W}_{\mathrm{A}}(\cos \beta)+\mathrm{U}_{\mathrm{h}}(\sin \beta)-\mathrm{U}_{\mathrm{n}}$
$\mathrm{N}_{\mathrm{A}}=473.19 \mathrm{kN}$
$W_{P}=\gamma_{\mathrm{dr} \gamma} \frac{\left(h^{2}-h_{w}{ }^{2}\right)+\gamma_{\operatorname{satd}}\left(h_{\underline{w}} 2^{2}\right.}{\sin 2 \beta}$
$W_{P}=\quad 11.39 \mathrm{kN}$
$\mathrm{U}_{\mathrm{v}}=\mathrm{U}_{\mathrm{h}}(\cot \beta)$
$\mathrm{U}_{\mathrm{V}}=\quad 0.00 \mathrm{kN}$
$F S=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}$
$a=W_{A}(\sin \beta)(\cos \beta)-U_{h}\left(\cos ^{2} \beta\right)+U_{h}$
$\mathrm{a}=149.72$
$\mathrm{b}=-\mathrm{W}_{\mathrm{A}}\left(\sin ^{2} \beta\right)(\tan \phi)+\mathrm{U}_{\mathrm{h}}(\sin \beta)(\cos \beta)(\tan \phi)-\mathrm{N}_{\mathrm{A}}(\cos \beta)(\tan \delta)-\left(\mathrm{W}_{\mathrm{P}}-\mathrm{U}_{\mathrm{V}}\right)(\tan \phi)$

$\phi=$	28.00	
δ	\circ	$=$
22.70		

 \(b=-220.38\)
 $\mathrm{c}=\mathrm{N}_{\mathrm{A}}(\sin \beta)(\tan \delta)(\tan \phi)$
$\mathrm{c}=\quad 33.29$
$F S=\quad 1.30$

Summary:

DLC	18.41
PSR	0.001
FS	1.30

At the critical interface friction angle of $\mathbf{2 2 . 7}$ degrees (23 degrees) for all soil-geosynthetic and geosynthetic-geosynthetic interfaces, the factor of safety is calculated as 1.3 indicating that there is adequate shear strength available to prevent the liner system from sliding during construction. Therefore the liner system is stable under the slope conditions analyzed.
The resulting drainage layer capacity of greater than 1.0, indicating the saturation of the liner soil would not occur. Therefore the anticipated flow capacity within the drainage layer is sufficient to handle a 25 -year 24-hour storm event.

Geocomposite drainage net has a thickness of 250 mil and a hydraulic conductivity of at least $4 \mathrm{~cm} / \mathrm{sec}$.
Slope length $=150$ feet (50 m) at 3:1 sideslope
Liner soil hydraulic conductivity $=1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$.

VENEER STABILITY ANALYSES

FINAL COVER SYSTEM

Veneer (Final Cover) System Stability

Project: City of Waco Landfill
Location: McLennan and Limestone Counties, TX
Prepared by: SCS ENGINEERS
Date: February 12, 2019
Consideration: To evaluate the stability of the cover system with seepage forces applied using the method described by Koerner and Soong (1998) referenced below.

Ref.: R.M. Koerner, and T-Y.Soong, 1998. "Analysis and Design of Veneer Cover Soils". Proceeding of 6th International Conference on Geosynthetics, Vol. 1, pp. 1-23, Atlanta, Georgia, USA.

Parameters:

DLC	$=$	drainage layer capacity
$\mathrm{FLUX}_{\text {allow }}$	$=$	allowable flow rate of the drainage layer per unit width of slope
k_{d}	$=$	permeability of drainage soil or geosynthetic
h_{d}	$=$	thickness of the drainage soil or geosynthetic
i	$=$	$\sin \beta=$ slope gradient
FLUX $_{\text {req'd }}$	$=$	actual flow rate per unit width of slope
PERC	=	the rate of percolation
P	=	probable maximum (hourly) precipitation (25-year storm event)
RC	=	runoff coefficient
L	=	length of drainage slope
$\mathrm{k}_{\text {cs }}$	=	permeability of cover soil
β	$=$	slope angle
w	=	1.0 m = unit width of drainage slope
PSR	=	parallel submergence ratio
$\mathrm{h}_{\text {avg }}$	$=$	average head buildup above the geomembrane
$\mathrm{h}_{\text {cs }}$	=	thickness of cover soil
FS	$=$	factor of safety against instability
$W_{\text {A }}$	$=$	total weight of the active wedge
W_{P}	$=$	total weight of the passive wedge
U_{h}	$=$	resultant of the pore pressures acting on the interwedge surfaces
U_{n}	$=$	resultant of the pore pressures acting perpendicular to the slope
U_{v}	$=$	resultant of the vertical pore pressures acting on the passive wedge
N_{A}	$=$	effective force normal to the failure plane of the active wedge
h	$=$	thickness of the cover soil
H	=	vertical height of the slope measured from the toe
h_{w}	=	$(\mathrm{PSR})(\mathrm{h})=$ height of the free water surface measured from the geomembrane
$\gamma_{\text {dry }}$	$=$	dry unit weight of the cover soil
$\gamma_{\text {sat'd }}$	$=$	saturated unit weight of the cover soil
γ_{w}	$=$	unit weight of water
ϕ	$=$	cover soil friction angle
δ	$=$	interface friction angle between cover soil and geomembrane

Calculate Drainage Layer Capacity (DLC):

```
PERC = P(1-RC), for P(1-RC) \leq k cs
PERC = k cs , for P(1-RC) > kcs
\begin{tabular}{rl}
\(\mathrm{k}_{\mathrm{CS}}\) & \(=1.00 \mathrm{E}-05 \mathrm{~cm} / \mathrm{s} \quad=3.60 \mathrm{E}-01 \mathrm{~mm} / \mathrm{hr}\) \\
P & \(=\)\begin{tabular}{rl}
8.40 \\
\(\mathrm{~mm} / \mathrm{hr}\) \\
RC & \(=\) \\
& 0.40
\end{tabular}
\end{tabular}
    P(1-RC) = 5.04 mm/hr
    PERC = 0.36 mm/hr
FLUX req'd
        1000
\begin{tabular}{rl}
\(L\) & \(=180.00\) \\
\(\beta\) & \(=14.04\) \\
& \({ }^{\circ} \quad=\quad 0.25 \mathrm{rad}\)
\end{tabular}
    L(cos}\beta)=174.62
    FLUXX req'd}= = 0.06 m m/hr
    FLUX allow = k
        \mp@subsup{k}{d}{}=4.00\textrm{E}+00}\textrm{cm}/\textrm{s}=4.00\textrm{E}-02\textrm{m}/\textrm{s
            \mp@subsup{\textrm{h}}{\textrm{d}}{}}={\begin{array}{l}{\textrm{i}=0.35}\\{=}
        FLUXX allow}=\quad0.22 m / /hr
DLC = FLUXX *llow
    DLC =
    3.53
```

Notes:

1) If only one soil layer above geomembrane, treat it as a drainage layer.
2) DLC needs to be greater than one to avoid saturation of the drainage layer.

Calculate Parallel Submergence Ratio (PSR):

Calculate Factor of Safety (FS):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=\gamma_{\text {dry }}\left(\mathrm{h}-\mathrm{h}_{\underline{w}}\right)\left[2 \mathrm{H} \cos \beta-\left(\mathrm{h}+\mathrm{h}_{w}\right)\right]+\gamma_{\operatorname{satd} d}\left(\mathrm{~h}_{\underline{w}}\right)\left(2 \mathrm{H} \cos \beta-\mathrm{h}_{\underline{w}}\right) \\
& \sin 2 \beta \\
& \begin{aligned}
& \gamma_{\text {dry }}=18.00 \\
& \gamma_{\text {satd }}=18.86 \\
& \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{kN} / \mathrm{m}^{3}
\end{aligned} \\
& \begin{array}{rrrr}
\mathrm{h}=\mathrm{h}_{\mathrm{d}}+\mathrm{h}_{\mathrm{cs}}= & 616.35 \mathrm{~mm} & = & 0.62 \mathrm{~m} \\
\mathrm{~h}_{\mathrm{w}}= & 1.80 \mathrm{~mm} & = & 0.00 \mathrm{~m} \\
\mathrm{H}=\mathrm{L} \times \sin \beta= & 43.67 \mathrm{~m} & &
\end{array} \\
& \mathrm{~W}_{\mathrm{A}}=1982.73 \mathrm{kN} \\
& U_{h}=\gamma_{\underline{w}}\left(\frac{h_{n}}{2}\right)^{2} \\
& \gamma_{\mathrm{w}}=\quad 9.81 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{U}_{\mathrm{h}}=\quad 0.00 \mathrm{kN} \\
& \mathrm{U}_{\mathrm{n}}=\gamma_{\underline{w}}\left(\mathrm{~h}_{\underline{w}}\right) \frac{(\cos \beta)\left(2 H \cos \beta-\mathrm{h}_{\underline{w}}\right)}{\sin 2 \beta} \\
& \mathrm{U}_{\mathrm{n}}=\quad 3.08 \mathrm{kN}
\end{aligned}
$$

$N_{A}=W_{A}(\cos \beta)+U_{n}(\sin \beta)-U_{n}$
$\mathrm{N}_{\mathrm{A}}=1920.41 \mathrm{kN}$
$W_{p}=\gamma_{d r y} \frac{\left(h^{2}-h_{w}{ }^{2}\right)+\gamma_{\text {satd }}}{\sin 2 \beta} h_{\underline{w}} L^{2}$
$W_{P}=\quad 14.53 \mathrm{kN}$
$\mathrm{U}_{\mathrm{V}}=\mathrm{U}_{\mathrm{h}}(\cot \beta)$
$U_{V}=\quad 0.00 \mathrm{kN}$
$F S=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}$
$\mathrm{a}=\mathrm{W}_{\mathrm{A}}(\sin \beta)(\cos \beta)-\mathrm{U}_{\mathrm{h}}\left(\cos ^{2} \beta\right)+\mathrm{U}_{\mathrm{h}}$
$a=466.64$
$\mathrm{b}=-\mathrm{W}_{\mathrm{A}}\left(\sin ^{2} \beta\right)(\tan \phi)+\mathrm{U}_{\mathrm{h}}(\sin \beta)(\cos \beta)(\tan \phi)-\mathrm{N}_{\mathrm{A}}(\cos \beta)(\tan \delta)-\left(\mathrm{W}_{\mathrm{P}}-\mathrm{U}_{\mathrm{V}}\right)(\tan \phi)$
$\phi=0 \quad 28.00^{\circ} \quad=\quad 0.49 \mathrm{rad}$
$\mathrm{b}=\quad-758.93$
$\mathrm{c}=\mathrm{N}_{\mathrm{A}}(\sin \beta)(\tan \delta)(\tan \phi)$
$\mathrm{c}=\quad 91.63$
$F S=\quad 1.50$

Summary:

DLC	3.53
PSR	0.003
FS	1.50

At the critical interface friction angle of $\mathbf{2 0 . 3}$ degrees for all soil-geosynthetic and geosynthetic-geosynthetic interfaces, the factor of safety is calculated as 1.5 indicating that there is adequate shear strength available to prevent the cover system from sliding. Therefore the cover system is stable under the slope conditions analyzed.

The resulting drainage layer capacity of greater than 1.0, indicating the saturation of the cover soil above the liner would not occur. Therefore the anticipated flow capacity within the drainage layer is sufficient to handle a 25 -year 24 -hour storm event.

Geocomposite drainage net has a thickness of 250 mil and a hydraulic conductivity of at least $4 \mathrm{~cm} / \mathrm{sec}$.
Slope length $=586$ feet (178.3 m , use 180 m) at 4:1 sideslope
Final cover soil hydraulic conductivity $=1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$.

APPENDIX 5C

SETTLEMENT ANALYSES

- Liner System Settlement Analysis
- Final Cover Settlement Analysis

SCS Engineers
TBPE Reg. \# F-3407
Inclusive of Pages 5-C-1 to 5-C-13

LINER SYSTEM

SETTLEMENT ANALYSIS

Spreadsheet to calculate the amount of foundation soils consolidation/settlement

East Disposal Area-Cross Section

Equation: $\mathrm{S}=\mathrm{C}_{\mathrm{c}}{ }^{*}\left[\mathrm{H} /\left(1+\mathrm{e}_{\mathrm{o}}\right)\right] * \log \left(\mathrm{P} / \mathrm{P}_{\mathrm{o}}\right)$, where
$\mathrm{S}=$ total settlement due to consolidation; feet
$\mathrm{C}_{\mathrm{c}}=$ Average compression index; $(\mathrm{Cc}=\mathrm{w} / 100)$, or $\mathrm{C}_{\mathrm{c}}=0.007(\mathrm{LL-7})$, or use previous reported value)
$\mathrm{w}=$ Moisture Content: \%
$\mathrm{H}=$ thickness of the foundation soil layer; feet
$e_{0}=$ average initial void ratio of the foundation soil layer before surcharge $(\mathrm{e}=(\mathrm{w} \times$ S.G.)/100, or use previous reported value)
$P=$ total pressure acting on mid-height of the foundation soil layer, $\left(P=P_{0}+s\right)$;psf.
$\mathrm{s}=$ surcharge $\left(\mathrm{s}=\left(\mathrm{H}_{\mathrm{s}} \times \mathrm{g}_{\text {Msw }}\right)+\left(\mathrm{F} \times \mathrm{g}_{\text {Fill }}\right)-\left(\mathrm{C} \times \mathrm{g}_{\text {Foundation }}\right.\right.$ Soil $)$
$H_{s}=$ Height of Waste in feet
$P_{0}=$ present effective overburden pressure at mid-height of the foundation soil layer; $\mathrm{psf}\left(\mathrm{P}_{\mathrm{o}}=\left(\mathrm{H}_{0} \times \mathrm{g}_{\text {Foundation soil }}\right) / 2\right)$
ASSUMPTIONS:
2. Average unit wt. of MSW, $\mathrm{g}_{\mathrm{msw}}$ (pcf)
4. Moisture C .
5. Liquid Limit (wD (WDA average) (\%):
6. C_{c} (using ($\mathrm{Cc}=\mathrm{w} / 100$):
7. C_{c} (using (Cc $=0.007$ (LL-7)):
8. Specific Gravity, S. G. (assumed for clays) $\quad 0.392$
10. Thickness of Final Cover System (ft) $\quad 2.7$

${ }^{1}$ Thickness of foundation soil remaining following excavation is zero. Therefore, settlement $=0 \mathrm{ft}$.

Analysis Location	Point A_{1}	Point A_{2}	Point A_{3}	Point A_{4}	Point A_{5}	Point A_{6}	Point A_{7}	Point A_{8}
x-Coordinate	2.7	104.4	300.0	561.0	740.1	915.6	1252.5	1378.0
Pre-settlement Top of Subgrade, ft	542.5	509.8	511.8	514.4	516.2	517.9	521.3	563.2
Total Settlement, ft	0.94	0.00	0.00	0.28	0.29	0.26	0.02	1.45
Post-settlement Top of Subgrade, ft	541.56	509.8	511.8	514.1	515.9	517.7	521.3	561.7
Analysis Location		Point A_{1} to Point A_{2}	Point A_{2} to Point A_{3}	Point A_{3} to Point A_{4}	Point A_{4} to Point A_{5}	Point A_{5} to Point A_{6}	Point A_{6} to Point A_{7}	Point A_{7} to Point A_{8}
Presettlement Corridor Slope, \%		32.11	-1.00	-1.00	-1.00	-1.00	-1.00	-33.38
Postsettlement Corridor Slope, \%		31.19	-1.00	-0.89	-0.99	-1.02	-1.07	-32.24
Initial Length, ft		106.82	195.61	260.96	179.16	175.51	336.92	132.31
Final Length, ft		106.53	195.61	260.96	179.16	175.51	336.92	131.86
Strain, \% (- values=no tension)		-0.265\%	0.000\%	-0.001\%	0.000\%	0.000\%	0.001\%	-0.337\%

Spreadsheet to calculate the amount of foundation soils consolidation/settlement

West Disposal Area - Cross Section

Equation: $\mathrm{S}=\mathrm{C}_{\mathrm{c}}{ }^{*}\left[\mathrm{H} /\left(1+\mathrm{e}_{\mathrm{o}}\right)\right] * \log \left(\mathrm{P} / \mathrm{P}_{\mathrm{o}}\right)$, where
$\mathrm{S}=$ total settlement due to consolidation; feet
$\mathrm{C}_{\mathrm{c}}=$ Average compression index; ($\mathrm{Cc}=\mathrm{w} / 100$), or $\mathrm{C}_{\mathrm{c}}=0.007(\mathrm{LL}-7)$, or use previous reported value)
w = Moisture Content; \%
$\mathrm{H}=$ thickness of the foundation soil layer feet
$e_{0}=$ average initial void ratio of the foundation soil layer before surcharge $(\mathrm{e}=(\mathrm{w} \times$ S.G.)/100, or use previous reported value)
$P=$ total pressure acting on mid-height of the foundation soil layer, $\left(P=P_{0}+s\right)$;psf.
$s=$ surcharge $\left(s=\left(H_{s} \times g_{\text {msw }}\right)+\left(F \times g_{\text {Fiil }}\right)-\left(C \times g_{\text {Foundation soil }}\right)\right.$
$H_{s}=$ Height of Waste in feet
$P_{0}=$ present effective overburden pressure at mid-height of the foundation soil layer; $\mathrm{psf}\left(\mathrm{P}_{\mathrm{o}}=\left(\mathrm{H}_{0} \times \mathrm{g}_{\text {Foundation soil }}\right) / 2\right)$
ASSUMPTIONS:

1. Average unit wt. of liner/fnl cvr, $\mathrm{g}_{\text {Fill }}$ (pcf): 120
2. Average unit wt. of MSW, $\mathrm{g}_{\text {msw }}$ (pct): 60
3. Unit weight of foundation soil, $\mathrm{g}_{\text {Foundation Soil }}(\mathrm{pcf})$: 125
4. Moisture Content (WDA average) (\%): 18
5. Liquid Limit (WDA average): 63
6. C_{c} (using $(\mathrm{Cc}=\mathrm{w} / 100)$): 0.180
7. C_{c} (using ($\mathrm{Cc}=0.007$ (LL-7)): 0.392
8. Specific Gravity, S.G. (assumed for clays) 2.7
9. Thickness of Final Cover System (ft) 3.5

Location of Consideration Point	EG el. feet	GWT El. feey	Top of Bedrock El. feet	Subgrade El. feet	Top of Protective Soil Layer feet	Top of Final Cover feet	Thickness of Found. Soil to Bedrock H feet	Existing Ground to Bedrock H_{o} feet	Fill F feet	Cut C feet	Height of Waste H_{s} feet	Natural Moisture Content W \%	Specific Gravity S.G.	$\begin{gathered} \mathrm{C}_{\mathrm{c}} \\ \text { (average) } \end{gathered}$	Surcharge (ΔP) s psf	$\mathrm{e}_{\text {。 }}$	P_{0}^{\prime} psf	$\left(\mathrm{P}_{\mathrm{o}}^{\prime}+\Delta \mathrm{P}\right)$ psf	Settlement S feet
SECTION 2 $\mathrm{A}_{1}(\mathrm{x}=0)$	554.7	525.0	515.0	520.7	524.7	629.6	5.7	39.7	0.0	34.0	101.4	18	2.7	0.286	3,002	0.4860	4,160	7,162	0.26
$\mathrm{A}_{2}(\mathrm{x}=218.4)$	554.0	525.0	515.8	518.5	522.5	650.0	2.7	38.2	0.0	35.5	124.0	18	2.7	0.286	3,888	0.4860	4,116	8,005	0.15
$\mathrm{A}_{3}(\mathrm{x}=417.2)^{1}$	550.0	525.0	518.5	516.5	520.5	657.7	0.0	31.5	0.0	33.5	133.7	18	2.7	0.286	N/A	0.4860	N/A	N/A	0.00
$\mathrm{A}_{4}(\mathrm{x}=1,108.5)^{1}$	537.8	525.0	512.5	509.6	513.6	565.5	0.0	25.3	0.0	28.2	48.4	18	2.7	0.286	N/A	0.4860	N/A	N/A	0.00
$A_{5}(\mathrm{x}=1,218.5)$	538.0	525.0	512.5	535.7	539.7	546.0	23.2	25.5	0.0	2.3	2.8	18	2.7	0.286	781	0.4860	1,738	2,518	0.72
																Max. Set	ment (Cell Floor)	0.26
																Max. Settl	ment (S	de Slope)	0.72

1 Thickness of foundation soil remaining following excavation is zero. Therefore, settlement $=0 \mathrm{ft}$.

Analysis Location	Point A_{1}	Point A_{2}	Point A_{3}	Point A_{4}	Point A_{5}
x-Coordinate	0.0	218.4	417.2	1108.5	1218.5
Pre-settlement Top of Subgrade, ft	520.70	518.50	516.52	509.60	538.00
Total Settlement, ft	0.26	0.15	0.00	0.00	1.04
Post-settlement Top of Subgrade, ft	520.44	518.35	516.52	509.60	536.96
Analysis Location		Point A_{1} to Point A_{2}	Point A_{2} to Point A_{3}	Point A_{3} to Point A_{4}	Point A_{4} to Point A_{5}
Pre-settlement Slope, \%		1.00	1.00	1.00	-25.82
Post-settlement Slope, \%		0.94	0.92	1.00	-24.87
Initial Length, ft		417.22	198.81	691.33	113.61
Final Length, ft		417.22	198.81	691.33	113.35
Strain, \% (- values=no tension)		-0.001\%	-0.001\%	0.000\%	-0.225\%

Figure 1. Location of the Analyzed Cross Section 1 on Excavation Grading Plan - East Disposal Area

Figure 2. Location of the Analyzed Cross Section 1 on Final Cover Grading Plan - East Disposal Area

Figure 3. Location of the Analyzed Cross Section 2 on Excavation Grading Plan - West Disposal Area

Figure 4. Location of the Analyzed Cross Section 2 on Final Cover Grading Plan - West Disposal Area

Figure 5. Cross Section 1 Geometry - East Disposal Area

Figure 6. Cross Section 2 Geometry - West Disposal Area

FINAL COVER SYSTEM

SETTLEMENT ANALYSIS

Location of Consideration Point	Top of Final Cover feet	Top of Waste feet	Waste El. at Midpoint feet	Thickness of Waste Layer feet	$\mathrm{cce}_{\text {ce }}$	Surcharg $(\Delta \mathrm{P})$ s psf	P'o psf	$\begin{gathered} \mathrm{P}^{\prime} \\ \text { (Po }+\Delta \mathrm{P}) \end{gathered}$ psf	Primary Settlement ft	C α	Secondary Settlement	Total Settlement
SECTION 1 $A_{1}(x=162.9)$	542.7	539.2	538.7	0.2	0.205	420.0	31.5	451.5	0.04	0.050	0.01	
$\mathrm{A}_{2}(\mathrm{x}=211.4)$	554.8	551.3	534.3	4.8	0.205	420.0	1018.5	1438.5	0.15	0.050	0.36	0.51
$\mathrm{A}_{3}(\mathrm{x}=741.0)$	687.0	683.5	588.8	27.1	0.205	420.0	5684.0	6104.0	0.17	0.050	2.00	2.17
$\mathrm{A}_{4}(\mathrm{x}=1643.9$)	697.6	694.1	593.8	28.7	0.205	420.0	6016.5	6436.5	0.17	0.050	2.12	2.29
$\mathrm{A}_{5}(\mathrm{x}=2285.0$)	689.9	686.4	593.1	26.7	0.205	420.0	5600.0	6020.0	0.17	0.050	1.97	2.14
$\mathrm{A}_{6}(\mathrm{x}=2795.8$)	695.3	691.8	592.7	28.3	0.205	420.0	5946.5	6366.5	0.17	0.050	2.09	2.26
$A_{7}(x=3089.9)$	694.0	690.5	593.4	27.8	0.205	420.0	5827.5	6247.5	0.17	0.050	2.05	2.22
$\mathrm{A}_{8}(\mathrm{x}=3230.0)$	687.0	683.5	588.9	27.0	0.205	420.0	5673.5	6093.5	0.17	0.050	2.00	2.17
$\mathrm{A}_{9}(\mathrm{x}=3674.3)$	575.7	572.2	541.4	8.8	0.205	420.0	1848.0	2268.0	0.16	0.050	0.65	0.81
$\mathrm{A}_{10}(\mathrm{x}=3764.8)$	553.0	549.5	549.2	0.1	0.205	420.0	17.5	437.5	0.02	0.050	0.01	0.03

Settlement of MSW Layer 5

Location of Consideration Point	Top of Final Cover feet	Top of Waste feet	Waste El. at Midpoint feet	Thickness of Waste Layer feet	$\mathrm{C}_{\text {ce }}$	Surcharge (ΔP) s psf	P'o psf	$\begin{gathered} \mathrm{P}^{\prime} \\ \left(\mathrm{P}^{\prime}+\Delta \mathrm{P}\right) \end{gathered}$ psf	Primary Settlement ft	$\mathrm{C} \alpha$	Secondary Settlement ft	Total Settlement ft
SECTION 1												
$\mathrm{A}_{1}(\mathrm{x}=162.9)$	542.7	539.2	538.5	0.2	0.205	420.0	40.5	460.5	0.03	0.050	0.01	0.04
$\mathrm{A}_{2}(\mathrm{x}=211.4)$	554.8	551.3	529.5	4.8	0.205	420.0	1309.5	1729.5	0.12	0.050	0.36	0.48
$\mathrm{A}_{3}(\mathrm{x}=741.0)$	687.0	683.5	561.7	27.1	0.205	420.0	7308.0	7728.0	0.13	0.050	2.00	2.13
$\mathrm{A}_{4}(\mathrm{x}=1643.9)$	697.6	694.1	565.2	28.7	0.205	420.0	7735.5	8155.5	0.13	0.050	2.12	2.25
$\mathrm{A}_{5}(\mathrm{x}=2285.0$)	689.9	686.4	566.4	26.7	0.205	420.0	7200.0	7620.0	0.13	0.050	1.97	2.10
$\mathrm{A}_{6}(\mathrm{x}=2795.8$)	695.3	691.8	564.4	28.3	0.205	420.0	7645.5	8065.5	0.13	0.050	2.09	2.23
$\mathrm{A}_{7}(\mathrm{x}=3089.9$)	694.0	690.5	565.6	27.8	0.205	420.0	7492.5	7912.5	0.13	0.050	2.05	2.18
$\mathrm{A}_{8}(\mathrm{x}=3230.0$)	687.0	683.5	561.9	27.0	0.205	420.0	7294.5	7714.5	0.13	0.050	2.00	2.13
$\mathrm{A}_{9}(\mathrm{x}=3674.3)$	575.7	572.2	532.6	8.8	0.205	420.0	2376.0	2796.0	0.13	0.050	0.65	0.78
$\mathrm{A}_{10}(\mathrm{x}=3764.8$)	553.0	549.5	549.1	0.1	0.205	420.0	22.5	442.5	0.02	0.050	0.01	0.03

Point Number	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}
X Coordinate	162.9	211.4	741.0	1643.9	2285.0	2795.8	3089.9	3230.0	3674.3	3764.8
Layer 1 -Total Settlement (ft)	0.07	0.94	3.00	3.13	2.97	3.10	3.06	3.00	1.40	0.04
Layer 2 -Total Settlement (ft)	0.06	0.65	2.38	2.50	2.35	2.48	2.43	2.38	0.98	0.04
Layer 3-Total Settlement (ft)	0.05	0.55	2.24	2.35	2.21	2.33	2.29	2.23	0.87	0.03
Layer 4 -Total Settlement (ft)	0.05	0.51	0.51	2.29	2.14	2.26	2.22	2.17	0.81	0.03
Layer 5-Total Settlement (ft)	0.00	0.48	2.13	2.25	2.10	2.23	2.18	2.13	0.78	0.03
Layer 6 -TotalSettlement (ft)	0.04	0.46	2.11	2.23	2.08	2.20	2.16	2.11	0.76	0.03
Total Settlement at Point (ft)	0.27	3.59	12.37	14.75	13.86	14.60	14.35	14.01	5.59	0.20

X Coordinate	162.9	211.4	741.0	1643.9	2285.0	2795.8	3089.9	3230.0	3674.3	3764.8
Pre-settlement Top of Final Cover, ft	542.7	554.8	687.0	697.6	689.9	695.3	694.0	687.0	575.7	553.0
Total Settlement, ft	0.27	3.59	12.37	14.75	13.86	14.60	14.35	14.01	5.59	0.20
Post-settlement Top of Final Cover, ft	542.43	551.21	674.6	682.8	676.0	680.7	679.7	673.0	570.1	552.8

Analysis Location	Point A_{1} to Point A_{2}	Point A_{2} to Point A_{3}	Point A_{3} to Point A_{4}	Point A_{4} to Point A_{5}	Point A_{5} to Point A_{6}	Point A_{6} to Point A_{7}	Point A_{7} to Point A_{8}	Point A_{8} to Point A_{9}	Point A_{9} to Point A_{10}
Presettlement Final Cover Top Slope, \%	-24.95	-24.96	-1.17	1.20	-1.06	0.44	5.00	25.05	25.08
Postsettlement Final Cover Top Slope, \%	-18.09	-23.30	-0.91	1.06	-0.91	0.36	4.76	23.15	19.13
Initial Length, ft	49.99	545.85	902.96	641.15	510.83	294.10	140.27	458.03	93.30
Final Length, ft	49.29	543.79	902.94	641.14	510.82	294.10	140.26	456.05	92.14
Strain, \% (Tensile Negative)	1.399\%	0.377\%	0.003\%	0.002\%	0.001\%	0.000\%	0.012\%	0.431\%	1.247\%

CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400
 McLENNAN AND LIMESTONE COUNTIES, TEXAS

PART III - SITE DEVELOPMENT PLAN
 ATTACHMENT 6A
 SURFACE WATER DRAINAGE PLAN

Prepared for:

CITY OF WACO

Solid Waste Services 501 Schroeder Drive
Waco, TX 76710

Prepared by:
SCS ENGINEERS
Texas Board of Professional Engineers, Reg. No. F-3407
Dallas/Fort Worth Office
1901 Central Drive, Suite 550
Bedford, Texas 76021
817/571-2288
Revision 0 - April 2020
SCS Project No. 16216088.00

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION 6A-1-1
2 METHODOLOGY 6A-2-1
2.1 HYDROLOGIC ANALYSIS METHODS 6A-2-1
2.2 HYDRAULIC ANALYSIS METHODS. 6A-2-5
2.3 SOIL LOSS ANALYSIS METHODS 6A-2-10
3 PRE-DEVELOPMENT CONDITIONS 6A-3-1
4 POST-DEVELOPMENT CONDITIONS 6A-4-1
4.1 PERIMETER CHANNEL DESIGN 6A-4-1
4.2 DETENTION BASIN DESIGN. 6A-4-1
4.3 BASIN OUTLET STRUCTURE DESIGN 6A-4-2
5 IMPACT TO EXISTING DRAINAGE PATTERNSPOINT OF DEMONSTRATION 6A-5-1
5.1 POINT OF DEMONSTRATION 6A-5-1
5.2 PRE-DEVELOPMENT CONDITIONS 6A-5-1
5.3 POST-DEVELOPMENT CONDITIONS 6A-5-1
5.4 COMPARISON OF PRE- AND POST-DEVELOPMENT DISCHARGE RATES 6A-5-1
6 EROSION AND SEDIMENTATION CONTROL PLAN. 6A-6-1
6.1 INTRODUCTION 6A-6-1
6.2 GENERAL EROSION AND SEDIMENTATION CONTROLS 6A-6-2
6.3 SOIL STOCKPILES AND DAILY COVER EROSION CONTROL PRACTICES 6A-6-6
6.4 INTERMEDIATE COVER EROSION CONTROL PRACTICES 6A-6-7
6.5 FINAL COVER EROSION CONTROL PRACTICES 6A-6-7
6.6 SEQUENCE OF DEVELOPMENT - PERIMETER DRAINAGE SYSTEM 6A-6-8
6.7 STORMWATER SYSTEM INSPECTION AND MAINTENANCE PLAN. 6A-6-8

Drawings

6A.1A Pre-Development Conditions (On-Site)
6A.1B Pre-Development Conditions (Off-Site)
6A. 2 Post-Development Conditions
6A. 3 Landfill Completion Plan
6A. 4 Channel Profile - Channel 1A1 to Channel 1A4
6A. 5 Channel Profile - Channel 2A1 to Channel 2A5
6A. 6 Channel Profile - Channel 3A1
6A. 7 Channel Profile - Channel 4A1 to Channel 4A5
6A. 8 Channel Profile - Channel 4B1 to Channel 4B7
6A. 9 East Disposal Area (EDA) East Basin Plan
6A. 10 East Disposal Area (EDA) West Basin Plan
6A. 11 West Disposal Area (WDA) Basin Plan

SCS Engineers
TBPE Reg. \# F-3407

6A. 12 Drainage Swale Details

6A. 13 Downchute Details
6A. 14 Basin Outlet Details
6A. 15 Specifications for Silt Fences and Hay Bales
6A. 16 Specifications for Sediment Traps and Check Dams
6A-E. 1 Final Cover - Drainage Swale Areas
6A-E. 2 Final Cover - Downchute Areas
6A-E. 3 Intermediate Cover - Typical Swale/Downchute Layout - I
6A-E. 4 Intermediate Cover - Typical Swale/Downchute Layout - II
6A-E. 5 Intermediate Cover - Downchute Areas

(Drawings 6A-E. 1 through 6A-E. 5 are provided in Appendix 6A-E)

Appendices

6A-A HEC-HMS Input Parameters
6A-B HEC-HMS Pre-Development Output Files
6A-C HEC-HMS Post-Development Input/Output Files
6A-D Discharge Hydrographs
6A-E Hydraulic Analysis
6A-F Soil Loss Analysis
6A-G Erosion and Sedimentation Control Inspection and Maintenance Form

SCS Engineers
TBPE Reg. \# F-3407

1 INTRODUCTION

This Surface Water Drainage Plan has been prepared as a part of the permit application for the City of Waco Landfill (landfill). This plan has been prepared consistent with the requirements outlined in 30 TAC Chapter 330, Subchapter G. This plan addresses the surface water drainage design, and erosion and offsite sedimentation controls that will be implemented and maintained during all phases of landfill operation.

Consistent with 30 TAC §330.303(a) and 330.305(b) and (c), the drainage features are designed to convey post-development run-on and runoff from a 25 -year, 24 -hour storm event. Attachment 6A also includes a surface water drainage demonstration pursuant to §330.305(a), which verifies that the proposed landfill development will not adversely alter existing drainage patterns surrounding the landfill. This surface water drainage demonstration was prepared consistent with TCEQ guidance document, "Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill", revised May 2018. Permit-level plans and details for the proposed surface water and erosion control features are presented in this attachment.

A demonstration of compliance with the floodplain location restriction [\$330.63(c)(2) and 330.307] is included in Part III, Attachment 6B - Floodplain Evaluation.

Groundwater protection measures for the landfill (e.g., bottom liner system, leachate collection system, and final cover system) are described in Part III, Attachment 6C - Groundwater Protection Plan.

2 METHODOLOGY

2.1 HYDROLOGIC ANALYSIS METHODS

This subsection describes the hydrologic methodology used for the surface water drainage demonstration. The demonstration provided herein includes an analysis of the impacts to existing drainage patterns (pre-development conditions) as a result of the proposed landfill development (post-development conditions) in accordance with §330.63(c)(1)(C). Pre-development conditions are depicted on Drawings 6A.1A and 6A.1B, while post-development conditions, which are representative of the landfill at final grade, are shown on Drawing 6A.2. To evaluate impacts to existing drainage patterns, pre- and post-development peak flow rates and total discharge volumes were compared at offsite discharge locations referred to as points-of-demonstration (POD). A POD is defined as a location where one or more contributing drainage areas, channels, or detention basins discharge offsite. Based on review of pre-development conditions, surface water is discharged from the property at eleven locations or PODs. Pre- and post-development conditions are described in Sections 3 and 4 of this attachment, respectively. The comparison of pre- and post-development discharge rates at these eleven PODs is further described in Subsection 5.4 of this attachment.

In accordance with §330.63(c)(1)(D), the pre- and post-development hydrologic conditions were modeled for a 25-year, 24-hour storm event using the U.S. Army Corp of Engineers’, Hydrologic Engineering Center's - Hydrologic Modeling System, Version 4.0 computer software (referred to as HEC-HMS). HEC-HMS was used to develop hydrographs for both the pre-development and post-development conditions for computation of the peak flow rates and total discharge volumes, as described in the following subsections.

Peak flow rates and total discharge volumes were compared between the pre- and postdevelopment conditions to evaluate potential impacts to existing drainage patterns, as described in Section 5. Additionally, the peak flow rates modeled using HEC-HMS were used in the design of the major surface water drainage features proposed for the landfill property (i.e., perimeter drainage channels, detention basins, and outlet structures), as described in Section 4.

2.1.1 Description of HEC-HMS Computer Program

HEC-HMS is a Windows-based program incorporating analytical methods to simulate the surface runoff response of a watershed subjected to a design storm event. The HEC-HMS model represents a watershed as a network of hydrologic and hydraulic components. The modeling process results in the computation of hydrographs for surface water runoff, channel-flow, and detention basin storage within the watershed. HEC-HMS then combines and routes the hydrographs through user-defined up- and down-gradient drainage features to defined watershed outlets (i.e., PODs).

Input parameters for the HEC-HMS model are described below. The input parameters assumed for the HEC-HMS modeling are summarized in tables included in Appendix 6A-A. The tables include parameters for both the pre-development subbasins, as well as post-development subbasins, channels, and detention basins.

2.1.1.1 Watershed Subbasins

Subbasins are generally assumed to be drainage areas that share similar run-on and runoff characteristics, surface features, and typically discharge to a single reach (i.e., channel), detention basin, or off-site discharge location, such as a POD. The on-site and off-site watershed subbasins and surrounding drainage features modeled using HEC-HMS are presented on Drawings 6A.1A and 6A.1B (pre-development conditions) and Drawing 6A. 2 (post-development conditions).

2.1.1.2 Time Step

The time step, or the program computation interval, and model duration are used to develop the hydrographs. The time step interval determines the resolution of the model results computed during a model run. A time interval of one minute was used for the computations, resulting in 1440 hydrograph ordinates per 24 -hour period. The model duration was set at 48 hours. This duration allowed precipitation from the design storm to exit the landfill property, with the exception of any stormwater retained in the basin sediment storage. This duration was also long enough that the hydrograph peak had clearly passed and that flows had decreased to a level at which a longer time period would yield no usable information.

2.1.1.3 Hypothetical Precipitation Distribution

The hypothetical precipitation distribution was derived from the National Weather Service, Technical Paper No. 40 (TP-40). A Type III storm event with a return period of 25 years and duration of 24 hours was used for the hydrologic modeling. This storm event is associated with approximately 7.75 inches of precipitation, which was assumed to be evenly distributed across the entire watershed for the return period. A figure presenting the source of the precipitation data used in the model is included in Appendix 6A-A.

2.1.1.4 Precipitation Losses

Precipitation losses (the precipitation that does not contribute to runoff) were estimated in the HEC-HMS model by the Soil Conservation Service (SCS) Curve Number (CN) method. This method relates the hydrologic soil group to the CN as a function of soil type, land use, and antecedent moisture conditions. Input values for the method typically include the CN value, the initial abstraction, and the percent impervious area for each subbasin.

Initial abstraction (IA) represents the precipitation loss that occurs at the beginning of a storm event, prior to runoff beginning. The model allows either IA values to be input, or to be calculated by the model. For this analysis, the model calculated the IA values as a function of the CN method.

CN values for pre-development were selected based on the cover type. A CN value of 85 was used for post-development conditions, which is a conservative assumption. Reference tables for these CN values are provided in Appendix 6A-A. Based on Soil Survey Maps and subsurface explorations conducted as part of this permit application, on-site soils are predominantly clayey soils. Therefore, Soil group D was used for curve number determination since on-site soils are generally clays.

2.1.1.5 Routing and Hydrograph Methods

Numerous routing and hydrograph methods are available within the HEC-HMS model. The routing and hydrograph method represents the methodology used by the model to develop hydrographs for each subbasin, channel, and detention basin, which are then combined by the program to represent the watershed being analyzed. The specific routing and hydrograph methods used for the analysis are discussed in subsequent subsections. HEC-HMS routing and hydrograph methods were used to predict the peak flow rates (peak of hydrograph), as well as the total discharge volume (area under the hydrograph) associated with pre- and post-development conditions.

Discharge hydrographs for each POD for both pre- and post-development conditions are presented in Appendix 6A-D of this attachment.

2.1.1.6 Subbasin Transform

SCS Unit Hydrograph Transform Method - The SCS Unit Hydrograph (UH) method was used for developing a hydrograph that develops surface runoff calculations for pre-development subbasins, post-development areas that are not within the limit of waste, and small postdevelopment subbasins that do not have main channels, which are required when using the Kinematic Wave Method. These post-development areas include the areas occupied by detention basins and landfill sideslope areas that discharge to perimeter channels.

The UH method generalizes the surface water flow of a drainage area into a dimensionless unit hydrograph, based on the ratio of discharge to UH peak discharge and the ratio of time to UH time to peak. The UH time to peak is dependent on the drainage area lag time, which is defined as the length of time between the centroid of precipitation mass and the peak flow of the resulting hydrograph. The input parameter for this method is the lag time, which is typically approximated by taking 60 percent of the time-of-concentration for these areas. Time of concentrations for these areas were estimated using the Velocity Method. As introduced in the USDA Part 630 Hydrology National Engineering Handbook Chapter 15 (May, 2010), the velocity method assumes that time of concentration is the sum of travel times for segments along the hydraulically most distant flow path. The segments used in the Velocity Method may be of three types: sheet flow, shallow concentrated flow, and open channel flow. Time of concentration is calculated for each segment and total time of concertation is used for lag time calculation. Equations used for sheet flow, shallow concentrated flow, and open channel flow are presented in the pre-development summary tables in Appendix 6A-A along with the input parameters.

Kinematic Wave Transform Method - The Kinematic Wave method is designed principally for representing urban areas. It is a model that includes one or two representative planes. Typically, one plane is used for pervious surfaces and one for impervious. The same meteorological boundary conditions are applied to each plane. However, separate loss rate information is required for each plane. The Kinematic Wave Transform methodology was used to develop surface runoff calculations for developed post-development subbasins located within the limits of waste of the landfill or areas outside the waste limit boundary, such as detention basins and other disturbed areas.

Various input parameters for the Kinematic Wave Transform method components are summarized below:

- Flow Plane: Requires the input of average flow plane length, slope, and surface roughness (N , representative of land-use and ground cover). Parameters were determined from review of design final grades for post-development conditions.
- Collector: Requires the input of average collector length, average slope, Manning’s " n ", channel geometry, and average contributing area. The average contributing area within the subbasin (drainage area) discharges into a single collector (drainage swale). The subbasin area is divided by this average contributing area to estimate the number of collectors within each subbasin. Parameters for collectors are based on the landfill completion design for post-development conditions.
- Main Channel: Requires input of channel length, average slope, Manning’s " n ", and channel geometry. Parameters were determined from review of design final grades for post-development conditions.

The post-development condition (landfill completion) was separated into subbasins that are representative of either landfill topslopes, landfill sideslopes, or areas outside the waste limit boundary, such as detention basins and other disturbed areas. The flow planes, collectors, and main channels for landfill topslopes and sideslopes are represented as follows:

- Landfill Topslopes: Flow planes are related to the topslope area above the upper-most drainage swale, which represent the main channel within each respective topslope subbasin.
- Landfill Sideslopes: Flow planes are represented by the area between drainage swales proposed for the sideslopes, which discharge into collectors that are represented by the drainage swales. The collectors or drainage swales discharge into a main channel, which is represented by a downchute located in each sideslope subbasin. It should be noted that the perimeter channels, into which the sideslope drainage features discharge, were evaluated using the Muskingum-Cunge method as discussed in Subsection 2.1.1.8.

The input parameters, as described above, for overland flow planes, collectors, and main channels for each post-development subbasin are summarized in Appendix 6A-A.

2.1.1.7 Detention Basin Routing

Detention basins are used in the design to reduce the combined peak flow rates from the postdevelopment subbasins to a level that will not adversely impact down-gradient properties, when compared to the pre-development conditions. Additionally, detention basins will provide off-site sedimentation control, as described in Subsection 4.2 of this attachment.

HEC-HMS is capable of modeling the effects of detention basins based on the inflow hydrographs using the Modified Puls method of storage routing. The program assumes level-pool routing, such that inflow into the detention basin is assumed to affect the entire basin immediately. Input
parameters consist of elevation-area and elevation-discharge relationships for each detention basin. Elevation-area-discharge relationships are presented in Appendix 6A-A.

2.1.1.8 Perimeter Channel Routing

Perimeter channel routing in the HEC-HMS model was performed using the Muskingum-Cunge method. The Muskingum-Cunge method was selected based upon its ability to account for hydrograph attenuation inherent in the physical properties of the channel and the inflow hydrograph. The input parameters for the model are based on the length, channel geometry, and surface roughness of the channel. Input parameters for post-development drainage channels are summarized in Appendix 6A-A and depicted on channel profile drawings in this attachment.

Channel capacity, velocity, and peak flow depths for input onto the channel profile drawings were estimated using Manning's equation, as described in Subsection 2.2 of this attachment.

2.2 HYDRAULIC ANALYSIS METHODS

This section describes the methodology used for evaluating hydraulic parameters, including geometry and peak flow velocities, for the stormwater conveyance structures, such as drainage swales and downchutes, perimeter drainage channels, culverts, and detention basin outlet structures that will be constructed at the landfill. It should be noted that the hydraulic analysis for drainage swales and downchutes pertains to both intermediate and final cover phases of landfill operation. This section also describes the methodology for evaluating the overland flow velocity on the topslope and sideslope of intermediate and final cover.

2.2.1 Permissible Non-Erosive Velocities

The peak flow velocities calculated using the methodologies described herein were compared to the permissible non-erosive velocity for vegetated landfill slopes or drainage features. Landfill cover or drainage features experiencing erosive velocities (i.e., in excess of the defined non-erosive velocity) will be armored or protected using structural controls, as described in Section 6 of this attachment.

In accordance with published literature, as provided with calculations in Appendix 6A-E, and TCEQ guidance, permissible non-erosive velocities are defined as velocities less than or equal to the following:

- 5 feet per second (fps) for vegetated perimeter channels, drainage swales, and final cover slopes; and
- 3 fps for intermediate cover slopes with vegetation in fair condition (i.e., 60 percent coverage).

These velocities are considered appropriate for the surface slopes and vegetative cover described herein and the predominantly clay soil present at the landfill property.

2.2.2 Analysis of Drainage Swales and Downchutes

Drainage swales, including topslope and sideslope swales, and downchutes are structural controls used to convey runoff from the landfill cover to the perimeter drainage system and to reduce cover erosion by limiting uninterrupted flow lengths. These structures will be installed on both intermediate and final cover at the frequencies specified. These structures will be utilized on topslopes and external embankment sideslopes (as defined in Subsection 6.1) to convey runoff to the installed perimeter drainage system and for control of erosion and offsite sedimentation. Erosion and sedimentation controls that will be implemented at the landfill are described in Section 6 of this attachment.

Drainage swales will be installed following construction and placement of intermediate and final cover to the representative grades coinciding with the elevations and/or maximum spacing between swales, as described below:

- Intermediate Cover - Maximum horizontal spacing between swales of 400 horizontal feet or 100 vertical feet on a $4 \mathrm{H}: 1 \mathrm{~V}$ slope. An example of this approach is shown on Drawings 6A-E. 3 and 6A.E4 provided in Appendix 6A-E.
- Final Cover - Maximum horizontal spacing between swales of 130 horizontal feet or 32.5 vertical feet on a $4 \mathrm{H}: 1 \mathrm{~V}$ slope. Drainage swales and downchutes on final cover will be installed at the locations depicted on Drawing 6A.3.

The installation schedule or frequency of drainage swales is based on overland flow velocity and potential soil loss from intermediate and final cover, as described in Subsections 2.2.5 and 2.3, respectively. Drainage swales will be installed to drain runoff to downchutes installed on intermediate or final cover. The methodology for sizing drainage swales and downchutes is described below. Additionally, specifications for installing drainage swales and downchutes are described in Subsection 6.2 of this attachment. Drainage swale and downchute details are depicted on Drawings 6A. 12 and 6A.13, respectively.

2.2.2.1 Rational Method

The Rational Method was used to estimate peak runoff from typical contributing areas for design of the drainage swales and downchutes installed on both intermediate and final cover. The Rational Method estimates the peak rate of runoff at any location in a watershed as a function of the drainage area, runoff coefficient, and mean rainfall intensity for a duration equal to the time-of-concentration (the time required for water to flow from the most remote point of the drainage area to the location being analyzed).

The Rational Method is expressed as the following:

$$
\mathrm{Q}=\mathrm{CIA}
$$

Where, $\quad \mathrm{Q}=$ maximum rate of runoff, cfs
$\mathrm{C}=$ runoff coefficient representing a ratio of runoff to rainfall
$\mathrm{I}=$ average rainfall intensity for a duration equal to the time-of-concentration, inches per hour
$\mathrm{A}=$ drainage area contributing to the discharge location, acres
The runoff coefficient (C) used for the drainage swale and downchute analysis is described in the calculations provided in Appendix 6A-E. The 25-year rainfall intensity (I) was determined for Limestone County from Technical Paper 40 (TP-40), assuming a minimum time-of-concentration (tc) of 10 minutes for sizing landfill drainage swales and downchutes. Description of the contributing areas used for the analysis of (1) topslope and sideslope swales and (2) downchutes are provided on drawings provided in Appendix 6A-E. Drawings 6A-E. 1 and 6A-E. 2 depict the contributing areas for drainage swales and downchutes installed on final cover, respectively. Drawings 6A-E.3, 6A-E. 4 and 6A-E. 5 depict the contributing areas for drainage swales and downchutes installed on intermediate cover, respectively.

2.2.2.2 Manning's Equation for Uniform Flow

Hydraulic analysis of the drainage swale and downchute geometry was performed using Manning's uniform flow equation. The uniform flow assumption used by Manning's equation is applicable to long prismatic channels of uniform slope, such as those proposed for the drainage swales or downchutes.

The general form of Manning's equation is:

$$
\mathrm{V}=\frac{1.49 \mathrm{R}^{0.667} \mathrm{~S}^{0.5}}{\mathrm{n}}
$$

Where, $\quad V=$ Velocity of flow, fps
n = Manning's " n "
$\mathrm{R}=$ Hydraulic Radius, ft , or

$$
R=\frac{A}{P}
$$

S = Friction slope for non-uniform flow or channel slope for uniform flow, $\mathrm{ft} / \mathrm{ft}$
A = Area of water perpendicular to direction of flow, sf $\mathrm{P}=$ Wetted perimeter, ft

Using the relationship $\mathrm{Q}=\mathrm{VA}$, Manning's equation can be written as:

$$
\mathrm{Q}=\frac{1.49 \mathrm{AR}^{0.667} \mathrm{~S}^{0.5}}{\mathrm{n}}
$$

The uniform flow assumption equates the slope of the structure to the friction slope. Therefore, the slope of the channel can be used for " S " in Manning's equation for computation of uniform flow. Using the peak flow rate for a 25 -year storm event calculated using the Rational Method (described above), the velocity and peak flow depth within drainage swales and downchutes was calculated using Manning's equation.

The following assumptions were used when evaluating the peak velocity with drainage swales and downchutes:

- Drainage swales will be grass-lined for velocities less than or equal to 5 fps . These structures were designed assuming a Manning's "n" of 0.027.
- When velocities exceed 5 fps , typically downchutes or drainage swales installed on intermediate cover, the structure will be lined with armoring materials, as described below.
- Armoring materials will include: rip rap or turf reinforcement mats (TRM) for intermediate cover drainage swales; gabions, rip rap, TRM, or flexible membrane liner for intermediate cover downchutes; and gabions for final cover downchutes. In any case, these structures were designed assuming a Manning's " n " of 0.033 , as this surface roughness provides the greatest flow depth within the respective structure for the referenced armoring materials.
- Energy dissipation in the form of gabions, rip rap, or dissipation blocks will be installed at the confluence of downchutes and the landfill toe of slope and/or perimeter drainage channels.

Both the drainage swale and downchute cross-sections will be designed with a minimum 1-foot freeboard and will be capable of retaining the peak flow rate, as calculated using the rational method described above. A peak flow analysis was performed for drainage swales and downchutes installed on both intermediate and final cover. Calculations using Manning's equation for the hydraulic properties of the drainage swales and downchutes were performed using the Dodson's HydroCalc Hydraulics program (Version 2.0.1). This flow analysis and the HydroCalc output summary sheets for these calculations are presented in Appendix 6A-E.

2.2.3 Flow Capacity of Perimeter Drainage Channels

Perimeter drainage channels were designed to convey runoff from the developed landfill property to down-gradient detention basins or offsite discharge locations. The peak flow rates obtained from HEC-HMS for contributing subbasins were used to evaluate the flow capacity of the perimeter drainage channels. HydroCalc was used to confirm that the designed channel geometry, depth, and invert slope will provide sufficient capacity to discharge the 25 -year, 24 -hour storm event. The following assumptions were incorporated into the channel modeling:

- Manning's coefficient values of 0.027 for grass-lined channels or 0.033 for rip rap or TRMlined channels was used for the analysis.
- Channels were designed with trapezoidal cross-sections with 3H:1V sideslopes.
- Each channel was analyzed for peak flow for the 25-year, 24-hour storm event, and then a minimum 1-foot of freeboard above the flow depth associated with the peak flow rate was added to the channel design.

Information derived from the HydroCalc output files includes channel flow depth and peak velocity at the peak flow conditions. This information, channel flow lines and peak velocities, were incorporated onto the channel profiles, as shown on Drawings 6A. 4 through 6A.8. The
respective HydroCalc output files for each of the perimeter channels are included in Appendix 6AE.

2.2.4 Reservoir 19 Structure

The elevation-area storage for Reservoir 19 was evaluated beginning at the principle spillway elevation, 520.69 ft . MSL, to an elevation 536 ft . MSL with the use of a topographic map. The Reservoir 19 basin structure is comprised of a culvert, principle spillway, and emergency spillway at elevation 532.74 ft . MSL. The culvert discharge flow rate was calculated using Hydrocalc. The principle spillway, discharges through a concrete weir, flow rates were calculated using the standard orifice and weir equations. The emergency spillway discharge flow rates were calculated using the ogee weir equation. Then the minimum discharge between the principle spillway and culvert discharge flow rate was selected and added to the emergency spillway discharge flow rate to develop a single elevation-discharge relationship.

This elevation-area-discharge relationship was input into the HEC-HMS to model the Reservoir 19 structure, for both Pre and Post Development. The discharge relationship for Reservoir 19 is provided in Appendix 6A-A of this attachment.

2.2.5 Detention Basin Outlet Structures

Three detention basins are proposed. Two detention basins are proposed for the East Disposal Area (EDA), EDA East Basin and EDA West Basin. A single detention basin is proposed for the West Disposal Area (WDA), WDA Basin. The EDA East Basin and EDA West Basin each have concrete weir outlet structures. WDA Basin discharges through a series of culverts. For basins with a concrete weir, the weir crest was designed above the basin floor, thereby providing at least 2 feet of sediment storage. Water is released from below the weir invert through 4-inch diameter weep-holes located at the basin floor. The discharge flow rates through the weep-holes and weir invert were calculated using the standard orifice and weir equations, respectively, then added together to develop a single area-elevation-discharge relationship. For the WDA Basin's series of culverts, the discharge flow rate of a single culvert was calculated using Hydrocalc, then multiplied by the number of culverts to create a single elevation-area-discharge relationship.
Elevation-area-discharge relationships were developed for each detention basin based on varying hydraulic heads on each specific outlet structure configuration. These elevation-area-discharge relationships were input into the HEC-HMS model for routing runoff through the detention basins and ultimately to offsite discharge locations or PODs. The discharge relationships for each detention basin are provided in Appendix 6A-A of this attachment. Drawing 6A. 14 depicts the detention basin outlet structures, including each outlet elevation and dimensions. This information is also summarized in Section 4 of this attachment.

2.2.6 Overland Flow Velocity

An analysis was performed to evaluate overland flow velocities on intermediate and final cover topslopes and sideslopes. Overland flow is defined as the combination of sheet flow and shallow concentrated flow conditions. Calculated overland flow velocities were compared to the permissible non-erosive flow velocities, as defined in Subsection 2.2.1 of this attachment.

In accordance with Technical Release 55 (TR-55), developed by the Natural Resources Conservation Service (formerly the Soil Conservation Service), sheet flow occurs on slopes at lengths less than 100 feet, whereas shallow concentrated flow begins at lengths greater than 100 feet. The time-of-concentration for sheet flow on the landfill slopes was analyzed using Kinematic Wave procedures, which are referenced from TR-55. Sheet flow velocity is defined as the ratio of the sheet flow length to the sheet flow time of concentration.

The shallow concentrated flow velocity was analyzed by calculating the shallow concentrated flow depth, which was derived using Manning's Equation. Based on the shallow concentrated flow depth, the peak flow rate and velocity were calculated using the Rational Method and the Continuity Equation $(\mathrm{Q}=\mathrm{VA})$ assuming a unit width of flow ($\mathrm{w}=1$-foot).

These methods were performed to demonstrate that the overland flow velocity on intermediate and final cover slopes will be below 3 fps and 5 fps , respectively, at the set swale spacing. The greatest potential slopes and flow lengths for both intermediate and final cover topslopes and sideslopes, as shown in Table 6A-2-1, were evaluated. The flow lengths provided in Table 6A-2-1 were selected to maintain velocities less than permissible non-erosive velocities and maintain soil loss less than the permissible soil loss limits (see Subsection 2.3 of this attachment). Drainage swales will be installed to maintain these maximum flow lengths on both intermediate and final cover.

Sample calculations for overland flow velocity on typical intermediate and final topslope and sideslope areas are presented in Appendix 6A-E. As presented in the calculations, flow velocities will be maintained at less than the maximum permissible non-erosive velocities for the respective vegetated cover. Sheet flow length was conservatively assumed to be 100 ft for the overland flow velocity calculations.

2.3 SOIL LOSS ANALYSIS METHODS

The Universal Soil Loss Equation (USLE)/Revised Universal Soil Loss Equation (RUSLE) was used to calculate the soil loss resulting from precipitation contacting the intermediate and final cover. The estimated soil loss was compared to the permissible soil loss for intermediate and final cover, as defined by the TCEQ. Consistent with TCEQ guidelines ("Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill", TCEQ, Revised May 2018), the soil loss demonstration should pertain to the top dome surfaces and external embankment sideslopes for both intermediate and final cover phases of landfill operation.

The USLE/RUSLE is an empirical equation which estimates soil losses from rainfall and runoff. The USLE was developed by statistical analysis of many plot-years of rainfall, runoff, and sediment loss data from many small plots located around the country. The USLE is supported by the National Resource Conservation Service (NRCS).

The Universal Soil Loss Equation is:

A=RKLSCP

Where \quad| A = average annual soil loss (tons/acre/ year) |
| :--- |
| $\mathrm{R}=$ rainfall and runoff erosivity index for a given location |
| $\mathrm{K}=$ soil erodibility factor |

$$
\begin{aligned}
& L=\text { slope length factor } \\
& S=\text { slope steepness factor } \\
& C=\text { cover and management factor } \\
& P=\text { erosion control practice factor }
\end{aligned}
$$

The input parameters into the USLE/RUSLE and soil loss calculations for both intermediate and final cover are presented in Appendix 6A-F of this attachment.

2.3.1 Intermediate Cover Soil Loss

The purpose of calculating the soil loss from intermediate cover is to evaluate the frequency (i.e., spacing between drainage swales) at which drainage swales will be installed to maintain soil loss less than or equal to 50 tons/acre/year (permissible soil loss recommended by the TCEQ for intermediate cover slopes).

Soil loss for intermediate cover was calculated for the worst-case topslope and external sideslope conditions. These conditions include the slopes and flow lengths described in Table 6A-2-1 and depicted on Drawing 6A-E. 3 (see Appendix 6A-E). Soil loss calculations for intermediate cover were based on the assumptions that vegetation will be established following application of intermediate cover, and that the vegetation will provide approximately 60 percent ground coverage. Drainage swales on intermediate cover will be installed to provide a maximum spacing of 400 horizontal feet or 100 vertical feet, assuming a $4 \mathrm{H}: 1 \mathrm{~V}$ sideslope.

Based on the calculated results, the maximum erosion potential was estimated to be 5.5 tons/acre/year and 43.0 tons/acre/year for the topslope and sideslope segments, respectively. Therefore, the soil loss potential is less than the maximum permissible soil loss of 50 tons/acre/year for intermediate cover slopes.

2.3.2 Final Cover Soil Loss

The purpose of calculating the soil loss from final cover is to evaluate the frequency (i.e., spacing between drainage swales) at which the drainage swales must be installed to maintain soil loss at less than or equal to 3 tons/acre/year (maximum permissible soil loss recommended by the TCEQ for final cover slopes). Soil loss on final cover was calculated for the slopes and flow lengths provided in Table 6A-2-1. The analysis for the topslope is based on the greatest flow length on the 5 percent topslope. Drainage swales on final cover sideslopes will be installed at a maximum spacing of 130 horizontal feet or 32.5 vertical feet, assuming a $4 \mathrm{H}: 1 \mathrm{~V}$ sideslope. Soil loss calculations for final cover were based on the assumption that vegetation would be established following application of final cover, and that the vegetation would provide approximately 90 percent ground coverage.

Based on the results, the maximum erosion potential of the final cover was estimated to be 0.45 tons/acre/year and 2.7 tons/acre/year on the topslope and sideslope, respectively.

Table 6A-2-1. Slopes and Flow Lengths ${ }^{1}$

Cover Phase	Topslope		Sideslope	
	Slope	Flow Length	Slope	Flow Length
Intermediate Cover	5 percent	650 feet	25 percent	400 feet
Final Cover	5 Percent	250 feet	25 percent	130 feet

1. Flow lengths are the maximum distances between drainage swales for both intermediate and final cover.

3 PRE-DEVELOPMENT CONDITIONS

As previously mentioned, pre-development conditions are defined as existing drainage patterns associated with the permit property prior to construction of the landfill and upstream drainage areas of adjacent properties that contribute run-on to the permit property. The overall permit property is approximately 502.2 acres in size and located approximately a half mile southeast of the intersection of Farm-to-Market 939 (FM-939) and State Highway 31 in Limestone County, Texas. This property is currently undeveloped agricultural land located within the Tehuacana Creek watershed. The property is vegetated with pastured grassland and brush. There are no structures or maintained roads on the property with the exception of one residential housing unit. The property is bounded by: (1) FM-939 and Reservoir 19 dam to the west; (2) undeveloped land to the north; (3) undeveloped land to the east; and (4) Reservoir 19 and undeveloped land to the south. Land-use within one-mile of the property is primarily undeveloped, ranchland, and agricultural land, as shown on Drawing I/II-5 - Land-Use Map.

Surface water flows into Horse Creek, which flows from north to south across the property, and across the property's south and southeast property boundaries towards Packwood Creek and Reservoir 19. Both Horse Creek and Packwood Creek discharge into Reservoir 19, adjacent to the property. Reservoir 19 is part of Williams Creek, a tributary of the Brazos River. The Elevation-Area-Discharge relationship for Reservoir 19 is provided in Appendix 6A-A. Surface water is discharged from the property at eleven offsite discharge locations, POD-1 through POD-11. The permit property and adjacent properties include on-site drainage areas, PRE-1 through PRE-9B, and off-site drainage areas, OS-1 through OS-5. These off-site areas were evaluated in this demonstration due to the following: (1) OS-1, OS-2, and OS-3 discharge into Horse Creek and directly impacts POD-8 (2) OS-4 discharges on-site, which impacts POD-8 (3) OS-5 discharges on-site, which impacts POD-1.

Although other off-site drainage areas, other than OS-1 through OS-5, contribute runoff into Packwood Creek that encroaches upon the southeast permit boundary, respectively, these off-site areas were not included in this demonstration. Stormwater runoff from these other off-site areas discharge directly into Packwood Creek or the unnamed tributary without contributing sheet flow or shallow concentrated flow across the property boundary.

Several stock ponds are located on-site, which were not modeled in HEC-HMS due to the small size of the ponds. These stock ponds were conservatively considered to be wet ponds, which do not account for surface water storage, as inflow into the pond equals the resulting outflow. Additionally, three drainage areas existing on-site, referred to as PRE-10A, PRE-10B, and PRE11, do not contribute a net runoff volume to a POD associated with Reservoir 19.

Specifically, the following conclusion can be made from review of Drawings 6A.1.A and 6A. 2 related to PRE-10A, PRE-10B, and PRE-11:

- PRE-10A and PRE-10B will convey stormwater in a southwesterly direction parallel to T. K. Parkway, prior to discharging off-site, downstream of the Reservoir 19 dam.
- PRE-11 will convey stormwater in a southwesterly direction towards T. K. Parkway, prior to discharging off-site.

Pre-development conditions, including on- and off-site drainage areas and subsequent POD locations are depicted on Drawings 6A.1A and 6A.1B. Pre-development PODs and contributing drainage areas are summarized below:

East PODs (POD-1 through POD-4):

The following drainage areas convey runoff in a southeasterly direction from the northeastern portion of the property across the east and southeast permit boundaries at the respective PODs:

- PRE-1, PRE-2, PRE-3, and PRE-4 discharge runoff at POD-1, POD-2, POD-3, and POD4, respectively.

Surface water discharged across the east and southeast property boundaries flow into Packwood Creek, which then discharges into Reservoir 19.

South PODs (POD-5 through POD-9):

The following drainage areas convey runoff in a southerly direction from the approximate center of the property across the southern permit boundaries at the respective PODs:

- PRE-5, PRE-6, and PRE-7 discharge at POD-5, POD-6, and POD-7, respectively.
- PRE-8A, PRE-8B, PRE-8C, OS-1 and OS-2 contribute runoff to and discharge at POD-8.
- PRE-9A contributes runoff onto OS-3, which flows back on-site to PRE-9B and discharges at POD-9.

All surface water runoff discharged across the southern property boundaries ultimately flows into Horse Creek, or directly into Reservoir 19.

West PODs (POD-10 and POD-11):

The following drainage areas convey runoff in a southwest direction from the southwestern portion of the property across the southwest permit boundaries at the respective PODs:

- PRE-10A and PRE-10B contribute runoff to and discharge runoff at POD-10.
- PRE-11 discharges at POD-11.

Surface water discharged across the southwest property boundaries flow downstream of the Reservoir 19 dam.

4 POST-DEVELOPMENT CONDITIONS

Post-development conditions with delineated drainage areas and direction of surface water flow to each detention basin and POD are depicted on Drawing 6A.2. Additionally, a general layout of the post-development drainage system, including perimeter drainage channels and detention basins, is presented on Drawing 6A.3. As shown, rainfall contacting the landfill topslope and sideslopes will be collected as runoff in drainage swales located near the landfill's upper grade break and at intervals on the $4 \mathrm{H}: 1 \mathrm{~V}$ sideslopes. Runoff will flow within the drainage swales, roughly parallel to the slope, into gabion-lined downchutes. Once in the downchutes, runoff will be conveyed to the toe of the landfill and into the perimeter drainage channels or discharge directly into detention basins. The perimeter drainage channels discharge into one of three detention basins. Surface water collected in the detention basins discharges through the basin outlet structures towards PODs, where it discharges offsite. The Elevation-Area-Discharge relationship for Reservoir 19 is provided in Appendix 6A-A.

4.1 PERIMETER CHANNEL DESIGN

The perimeter drainage channels will be constructed as filling proceeds sequentially across the property. This will allow the detention basins to be used for sediment control during landfilling operations. The channels were designed to have peak flow velocities of less than 5 feet per second where only vegetation is proposed for the channel lining. For velocities greater than approximately 5 feet per second, the channels were designed with either rip rap lining, gabions, or TRM.

The hydraulic analysis of the perimeter drainage channels is described in Subsection 2.2.3. As described in this subsection, the peak flow rates in the channels were determined from the HECHMS output for the respective contributing drainage areas. The peak velocity and flow depth within each channel were calculated using HydroCalc, based on the proposed channel geometry. A summary of the channel design parameters, which were incorporated into HEC-HMS and HydroCalc, are included in Appendix 6A-A. Additionally, the HydroCalc output files for each channel are included in Appendix 6A-E. Channel profiles, including channel inverts, surface water flowlines, and velocities under peak flow conditions are shown on Drawings 6A. 4 through 6A. 12. In addition, these drawings show a typical cross-section for each channel.

4.2 DETENTION BASIN DESIGN

Three detention basins (East Disposal Area (EDA) East, East Disposal Area (EDA) West, and West Disposal Area (WDA) Basins) have been designed for the landfill based on the postdevelopment runoff characteristics modeled in HEC-HMS, as described in Section 2 of this attachment. The EDA East Basin has been designed as a dry basin (i.e., water will not pond in the basin for extended periods), while the remaining basins have been designed as wet basins (i.e., water will pond in the basins).

The outlet structures for EDA East Basin and EDA West Basin are comprised of concrete weirs. The EDA East Basin weir crest will be constructed 1.5 feet above the basin floor; and the EDA West Basin weir crest will be constructed 4.5 feet above the basin floor, thereby providing offsite sedimentation control through an extended residence time within the basin. This sediment storage will slowly drain through 4-inch diameter weep holes in the concrete weirs located at the basin
floor. The WDA Basin was modeled using culverts, in HEC-HMS as a wet basin, assuming the basins were over excavated to either contain water, sediment, or a combination of both. Sediment will be removed from the detention basins on a regular basis during inspection and maintenance, as described in Subsection 6.7. The outlet structure of the WDA Basin will be comprised of two 21-inch diameter concrete culverts discharging to POD-8. Additionally, each detention basin has been designed with a minimum 1-foot of freeboard to prevent overtopping during the design storm event.

Elevation-area-discharge relationships for the basins are presented in Appendix 6A-A. HEC-HMS output for the detention basins, including the peak discharge, storage, and pool depth associated with the 25 -year, 24 -hour storm event is presented in Appendix 6A-C. This information also has been summarized in Table 6A-4-1. Detention basin layout plans are depicted on Drawings 6A. 13 through 6A. 18.

4.3 BASIN OUTLET STRUCTURE DESIGN

Peak discharge rates were calculated for each detention basin outlet structure, as described in Subsection 2.2.4 of this attachment. As described in this section, the standard orifice and weir equations were used for calculation of discharge rates through weep holes and concrete weirs. As previously described, the peak discharge rates were incorporated into the elevation-area-discharge relationships used in the HEC-HMS model, as provided in Appendix 6A-A. Design details for the culvert and concrete weir configurations are shown on Drawing 6A.14. Additionally, Table 6A-4-2 and Table 6A-4-3 describes the respective weir and culvert outlet dimensions/elevations.

Table 6A-4-1. Detention Basin Peak Storage and Discharge

Detention Basin	Discharge Points	Peak Storage (acre-feet)	Peak Pool Depth (ft msl)	Peak Discharge (cfs)
EDA East Basin	POD-1	4.7	537.7	106.3
EDA West Basin	POD-8	36.6	535.9	41.8
WDA Basin	POD-8	31.5	536.6	22.5

Table 6A-4-2. Detention Basin Peak Storage and Discharge

Detention Basin	Discharge Points	Basin Invert Elevation (ft msl)	Number of Weep Holes	Weir Elevation (ft msl)	Weir Length (ft)
EDA East Basin	POD-1	534.0	5	535.5	10.0
EDA West Basin	POD-8	530.0	3	534.5	7.0

Table 6A-4-3. Culvert Outlet Configuration Summary

Detention Basin	Discharge Points	Basin Invert Elevation (ft msl)	Diameter of Pipe (inches)	Number of Culverts	Culvert Elevation (ft msl)	Culvert Length (ft)
WDA Basin	POD-8	531.0	21	2	534.5	25.0

5 IMPACT TO EXISTING DRAINAGE PATTERNS POINT OF DEMONSTRATION

5.1 POINT OF DEMONSTRATION

As discussed in Section 2, PODs were established as shown on Drawing 6A.1A. Pre- and postdevelopment HEC-HMS models were developed with the PODs as the points where "impacts to existing drainage patterns" were evaluated by comparing the pre- and post-development conditions, as required by 30 TAC §§330.63(c)(1)(C).

5.2 PRE-DEVELOPMENT CONDITIONS

The pre-development subbasins, as described in Section 3, are presented on Drawings 6A.1A and 6A.1B. Input parameters for the HEC-HMS modeling performed for pre-development conditions are presented in tables included in Appendix 6A-A.

The results of HEC-HMS modeling of the pre-development conditions are included in Appendix 6A-B.

5.3 POST-DEVELOPMENT CONDITIONS

Post-development conditions are represented by the fully developed landfill, with final closure having been completed, and all drainage features in-place and operational, as described in Section 4 and presented on Drawing 6A.2. The post-development discharge conditions were analyzed at the same PODs as pre-development conditions. Input parameters for the HEC-HMS modeling performed for post-development conditions are presented in tables included in Appendix 6A-A.

The results of HEC-HMS modeling of the post-development conditions are included in Appendix 6A-C.

5.4 COMPARISON OF PRE- AND POST-DEVELOPMENT DISCHARGE RATES

The pre- and post-development peak discharge rates and total discharge volumes are summarized in Tables 6A-5-1 and 6A-5-2.

As shown in these tables, the landfill development will not result in significant increases in peak discharge rates at the PODs as demonstrated by comparison of the pre- and post-development conditions. Although there is a one minor increase and decrease in the peak discharge at the eleven PODs, (less than 2 percent increase at POD-8) and (56.5 percent decrease at POD-2) this increase is not significant and, as such, will not impact existing drainage patterns. The magnitude of change between the post-development peak discharge rates [no change or below (i.e., < 10 percent), with the exception of POD-2] and the pre-development rates will not adversely impact downstream receiving drainage features. As presented in Table 6A-5-2, the overall post-development discharge rate from PODs discharging to Reservoir 19 was almost same as the overall pre-development discharge rate. Therefore, no adverse impact to existing drainage patterns will result from the proposed landfill development.

Regarding the discharge volumes, as shown in Tables 6A-5-1 and 6A-5-2, the post-development discharge volume is below the pre-development discharge volume for all PODs. Therefore, it is concluded that there will be no adverse impact to existing drainage patterns related to the total volume of discharge to downstream water receiving rights and uses.

Furthermore, regarding the time of peak discharge, all off-site discharge during post-development occurs within 30 minutes of the corresponding pre-development peak during the first twenty-four hours following the design storm event. Hydrographs of the pre- and post-development conditions at each of the PODs are included in Appendix 6A-D. These hydrographs depict the respective peak discharge rates and discharge volumes (area under the hydrograph).

Discharge velocities from the property will be below the 5 feet per second threshold, which typically is considered the threshold for erosion damage. This will be accomplished by dissipating discharge velocities at the basin outlet structures prior to off-site discharge. Velocity dissipation from the outlet structures will be provided by either rip rap blankets, dissipation blocks or stilling basins installed at the outlet of each structure.

SCS concludes from the information presented herein, as summarized in Tables 6A-5-1 and 6A-5-2, that existing drainage patterns, as represented by the pre-development conditions, will not be adversely altered as a result of the landfill development, as required by 30 TAC §330.305(a).

Table 6A-5-1. Comparison of Pre- and Post-Development Conditions Peak Discharge Rate and Volume

Location: POD-1

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	153.9	$12: 50$	31.0
Post-development	150.9	$12: 20$	25.2
Percent Change	-1.9	N/A	-18.7

Location: POD-2

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	37.5	$12: 30$	6.2
Post-development	16.3	$12: 20$	2.2
Percent Change	-56.5	N/A	-64.5

Location: POD-3

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	34.2	$12: 40$	5.9
Post-development	32.6	$12: 30$	5.2
Percent Change	-4.7	N/A	-11.9

Location: POD-4

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	11.2	$12: 20$	1.4
Post-development	10.9	$12: 20$	1.4
Percent Change	-2.7	$\mathrm{~N} / \mathrm{A}$	0.0

Location: POD-5

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	55.0	$12: 40$	10.6
Post-development	53.2	$12: 30$	8.9
Percent Change	-3.3	N/A	-16.0

Location: POD-6

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	6.9	$12: 30$	1.1
Post-development	6.9	$12: 30$	1.1
Percent Change	0.0	N/A	0.0

Location: POD-7

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	33.9	$12: 40$	5.9
Post-development	33.0	$12: 30$	5.6
Percent Change	-2.7	N/A	-5.1

Location: POD-8

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	2030.2	$13: 40$	619.7
Post-development	2060.3	$13: 20$	621.8
Percent Change	1.5	N/A	0.3

Location: POD-9

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	4.1	$12: 40$	0.7
Post-development	4.1	$12: 40$	0.7
Percent Change	0.0	N/A	0.0

Location: POD-10

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	36.9	$12: 30$	6.5
Post-development	7.8	$12: 40$	1.3
Percent Change	-78.9	N/A	-80.0

Location: POD-11

Condition	Peak Discharge Rate (cfs)	Time of Peak Discharge (hours)	Discharge Volume (ac-ft)
Pre-development	21.9	$12: 20$	3.1
Post-development	21.0	$12: 40$	3.0
Percent Change	-4.1	N/A	-3.2

Notes

1. Values obtained from HEC-HMS output files (Appendices 6A-B and 6A-C).
2. Time of Peak Discharge in hours from beginning of 24 -hour storm period.

Table 6A-5-2. Comparison of Reservoir 19 Pre- and Post-Development Conditions Peak Discharge Rate and Volume
Location: Reservoir 19

Condition	Peak Discharge Rate (cfs)	Discharge Volume (ac-ft)
Pre-development	2366.9	682.5
Post-development	2368.2	672.1
Percent Change	0.1	-1.5

6 EROSION AND SEDIMENTATION CONTROL PLAN

6.1 INTRODUCTION

In accordance with §330.305(d), the landfill design will provide effective erosional stability to top dome surfaces and embankment sideslopes on all cover phases during landfill operation, including the closure and post-closure care period. This Erosion and Sedimentation Control Plan has been prepared consistent with TCEQ guidance document, "Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill", dated May, 2018. Part 2 of this document covers demonstrating erosional stability during all phases of landfill operation. Consistent with this guidance document, the landfill cover phases are defined as daily cover, intermediate cover, and final cover. Top dome surfaces and external embankment sideslopes are defined by the following criteria:

- Above-grade slopes that directly drain to the landfill’s perimeter drainage system, such as perimeter channels or detention basins.
- Areas of the landfill that have: (1) received intermediate or final cover; (2) reached their permitted fill elevation; or (3) require intermediate cover due to being inactive for longer than 180 days.

The following areas are not considered top dome surfaces or external sideslopes:

- Slopes which drain to areas where ongoing waste placement is occurring.
- Pre-excavated areas.
- Areas that have received only daily cover or areas under construction which have not received waste.

Erosional stability of landfill surfaces will be accomplished by implementing and maintaining best management practices on the landfill cover, including non-structural and structural controls, as described in Subsection 6.2. These controls specifically pertain to areas that receive runoff from top dome surfaces or external embankment slopes, as defined above. Landfill management will control erosion and offsite sedimentation by implementing interim controls, as specified in §330.305(e)(2). The frequency of installing erosion control measures on areas with intermediate and final cover are described in this subsection. These controls will be installed consistent with the overland flow velocity and soil loss analyses presented in Subsection 2.2 and Subsection 2.3, respectively. Additionally, Subsection 2.2 describes the methodologies for sizing drainage swales and downchutes installed on the intermediate and final cover. Furthermore, based on inspections of the landfill property, including top dome surfaces and external embankment sideslopes, for erosion and offsite sedimentation, additional controls will be implemented, as described herein. The following aspects are discussed in this Subsection, as they relate to erosion and offsite sedimentation controls:

- Typical non-structural and structural controls or best management practices (BMPs);
- Specifications for typical structural BMPs;
- Erosion control practices for soil stockpiles and daily cover, intermediate cover, and final cover;
- Sequence of development of the perimeter drainage system in conjunction with landfill development; and
- Inspection, maintenance, and recordkeeping requirements.

6.2 GENERAL EROSION AND SEDIMENTATION CONTROLS

This section describes general non-structural controls, general structural controls, and specifications for installing typical structural BMPs that will be implemented at the landfill to control erosion and offsite sedimentation. These controls will be installed as-needed based on the following: as required to maintain both surface velocities and potential soil loss below permissible limits; cover inspections for erosion and adequate vegetation; and inspection of offsite discharge locations for sediment.

Additionally, the non-structural and structural controls described in this subsection will be used independently or in combination to protect on-site and offsite water bodies from erosion and sedimentation associated with landfill operations. Offsite water bodies include tributaries of Horse Creek, which flows from north to south across the property

6.2.1 General Non-Structural Controls

Non-structural controls are defined as activities or practices performed at the landfill that will minimize the area and time that soil or landfill cover is exposed to erosion. Landfill and earthwork practices, such as excavations, stockpiling, and other land disturbances will be conducted to minimize erosion of existing and constructed features. These practices will also be conducted to minimize the sedimentation effects to tributaries of Horse Creek and stormwater control features, e.g., intermediate and final cover, hydraulic structures installed on the landfill cover, perimeter drainage channels, and detention basins. This will be accomplished by implementing the following procedures:

- Minimize the disruption of existing vegetation (i.e., grasses, brush, and trees), especially at the perimeter of the property, as long as practical to provide a vegetative buffer to offsite sedimentation.
- Phased development of the perimeter drainage system, including channels and detention basins, and waste disposal phases.
- Minimize the size of bare soil areas that discharge runoff to the perimeter drainage system. In the event this is not practical, structural controls or BMPs will be installed to reduce erosion of these surfaces or reduce offsite sedimentation.

Stabilize exposed soil or cover in a timely manner. This will be accomplished by stabilizing the soil with vegetation (structural control) consistent with the requirements described in Subsections 6.4 and 6.5.

6.2.2 Structural Controls

Structural controls are defined as installed measures or structures for the purpose of controlling erosion or offsite sedimentation. Structural controls discussed herein are related to materials or features installed to reduce erosion and sedimentation effects prior to discharge into the perimeter drainage system or offsite discharge locations. Examples of structural controls include swales/berms, vegetation, erosion control mats, energy dissipation devices, sediment trapping devices, and other structural BMPs specified in Subsection 6.2.3. Structural controls will be installed for the following situations:

- Where flow velocities are greater than 3 fps on intermediate cover or 5 fps on final cover;
- Where flow velocities are greater than 5 fps in drainage swales and perimeter channels;
- Where the erosion potential is greater than 50 tons/acre/year for intermediate cover or 3 tons/acre/year for final cover;
- Where non-structural controls are not effective; or
- Areas identified during cover inspections (see Subsection 6.7).

Erosion will be controlled by vegetation on landfill slopes and in drainage structures (drainage swales, perimeter drainage channels, and detention basins) with flow velocities less than or equal to approximately 5 fps . For drainage structures with flow velocities greater than 5 fps (primarily the downchutes, perimeter drainage channels, and basin outlets), suitable materials (see below) will be used to armor the drainage structures or to reduce erosive velocities.

Suitable materials for control of erosive velocities in drainage channels include, but are not limited to, TRMs, rip rap, or rock ditch checks, as appropriate. For perimeter channels, downchutes, or basins with high exit velocities (i.e., greater than 5 feet per second for the design peak discharge), gabions, rip rap, or dissipation blocks will be installed at channel transitions, toe of landfill slope, or downstream of the basin outlet structure, which will dissipate the velocity prior to the confluence with other drainage features or discharging onto adjacent properties.

6.2.3 Specifications for Typical Structural BMPs

During site development, BMPs will be employed to control erosion. BMPs to be deployed at the landfill, depending on the area of installation, include drainage swales and downchutes, temporary rock rip rap, silt fences, hay bales, check dams, temporary and permanent seeding and sodding, surface roughening, erosion control mats, sediment traps, and surface wetting for dust control. The following describes specifications for several BMPs that will be used:

1. Drainage Swales and Downchutes: Drainage swales will convey runoff to downchutes, which will discharge directly into perimeter drainage channels or detention basins. The spacing or installation frequency and sizing criteria for drainage swales and downchutes for intermediate cover and final cover, is described in Subsection 2.2. Drainage swales will be installed on the topslope at a minimum half percent slope. Drainage swales will be installed on the sideslope at a minimum one percent slope. Swales will be constructed to
flow in the direction of the respective downchute, which will convey the stormwater to the perimeter drainage system. Survey control will be used in the construction of the drainage swales and downchutes to provide the necessary minimum design slope to avoid ponding of water on the intermediate or final cover. Typically, these swales will be lined with vegetation, as velocities will be less than 5 fps . However, if velocities are greater than 5 fps or inspections indicate concerns with erosion, rip rap, rolled erosion control mats, or TRM will be installed. Downchutes installed on intermediate cover will be lined with gabions, rip rap, TRM, or flexible membrane liner (thickness > 40-mil). However, downchutes installed on final cover will be lined with gabions. The discharge points of downchutes will be lined with energy dissipation blocks or rip rap to reduce erosive velocities at the confluence with perimeter drainage channels.

Calculations for sizing sideslope swales and downchutes installed on intermediate and final cover, including peak velocities and flow depths are provided in Appendix 6A-E. Note, the actual contributing drainage areas to sideslope swales and downchutes installed on intermediate cover may vary at the time of installation due to the continuously evolving land form as waste is disposed. Therefore, the following criteria will be used for installing sideslope swales and downchutes on intermediate cover:
a. Topslopes with contributing drainage areas less than or equal to 17 acres: Drainage swales will be installed as grass-lined v-ditch channels with a minimum 2-foot depth, invert slope of 0.5 percent, $2 \mathrm{H}: 1 \mathrm{~V}$ and 5 percent (landfill side) sideslopes.
b. Sideslopes with contributing drainage areas less than or equal to 7.3 acres: Drainage swales will be installed as grass-lined v-ditch channels with a minimum 2.4-foot depth, invert slope of 1.0 percent, $2 \mathrm{H}: 1 \mathrm{~V}$ and $4 \mathrm{H}: 1 \mathrm{~V}$ percent (landfill side) sideslopes.
c. Sideslopes with contributing drainage areas greater than 7.3 acres but less than or equal to 10 acres: Drainage swales will be installed as v-ditch channels with a minimum 2.7 -foot depth, invert slope of 1 percent, and 4H:1V sideslopes. However, these swales will be lined with rip rap or TRM, as velocities may exceed 5 fps.
d. Downchutes with contributing drainage areas less than or equal to 35 acres: Downchutes will be installed as trapezoidal channels with a minimum 2-foot depth, 2H:1V sideslopes and 10-foot bottom lined with gabions, rip rap, TRM, or flexible membrane liner (thickness > 40-mil).
e. Sideslope swales and downchutes that vary from the above dimensions or with contributing drainages greater than that specified above, will be designed by a Texas Registered Professional Engineer prior to constructing these structures on intermediate cover. These designs will be signed and sealed by the engineer and maintained in the Site Operating Record.

Drawings 6A-E.3, 6A-E.4, and 6A-E. 5 (see Appendix 6A-E) depicts the contributing areas and conceptual locations for drainage swales and downchutes installed on intermediate cover. Drawings 6A-E. 1 and 6A-E. 2 depict the contributing areas for drainage swales and downchutes
installed on final cover. Drawing 6A. 3 depicts the location of drainage swales and downchutes installed on final cover. Typical details of sideslope swales and downchutes installed on intermediate or final cover are provided on Drawings 6A. 12 and 6A.13, respectively.
2. Seeding and Sodding: As specified in the SOP, intermediate cover and final cover will be seeded or sodded following application of the cover. This vegetation will be established on the top dome surfaces and the external embankment side slopes. At a minimum 60 percent and 90 percent vegetative cover will be maintained on areas with the intermediate and final cover for erosion control, respectively. Timeframes for establishing vegetation on the respective covers are described in Subsections 6.4 and 6.5.
3. Check Dams: Check dams constructed using gravel, rock, gabions, compost socks, hay bales, or sand bags may be installed within perimeter channels to reduce flow velocities and erosion. Check dams will be installed within perimeter channels that may experience erosive conditions or if, during cover inspections, it is determined that the vegetation is not adequately controlling erosion. The landfill manager will install check dams using the design criteria shown on Drawing 6A.23.
4. Silt Fences and Hay Bales: Silt fences or hay bales can be used to trap sediment suspended in runoff. The maximum drainage area to the silt fence will not exceed the manufacturer's specification, but in no case should the drainage area be greater than 0.5 acre per 100 feet of fence. Silt fences or hay bales are recommended for temporary or short term control, at which point they will be replaced and more permanent controls installed (i.e., stabilized vegetation, diversion berms, perimeter drainage system, etc.). These controls will be installed, as needed, at the toe of the landfill, toe of soil stockpiles, near property lines, and natural drainage features.

Drawing No. 6A. 15 includes installation guidelines for silt fences and hay bales. When installing and anchoring silt fences and hay bales, landfill personnel will make sure that the anchoring posts are adequately secured. Landfill personnel will routinely inspect silt fence and hay bale anchoring posts and sediment accumulation behind silt fences and hay bales during inspections of BMPs, as described in Subsection 6.7. As a result of these inspections, accumulated sediment will be removed from these structures; or the silt fence or hay bale will be repaired or replaced (if damaged).
5. Sediment Traps: Sediment traps will be installed up-gradient of offsite discharge locations to control offsite sedimentation. Sediment traps will only be installed if other on-site erosion control practices are not adequately controlling offsite sedimentation, as determined during inspection for cover erosion and sedimentation at offsite discharge locations. The purpose of sediment traps is to allow runoff to pool in man-made surface depressions (not located on waste) to allow sediment to settle out of runoff prior to discharging from the landfill property. The Landfill Manager will install sediment traps using the design criteria specified on Drawing 6A.16.
6. Compost/Straw Filter Berms or Socks: Compost filter berms or mesh socks filled with compost or straw material, measuring at least 1 foot high x 2 feet wide, may be installed at the toe of the landfill or soil stockpile slopes. These berms or mesh socks will be replaced
in the event they become clogged with sediment, as indicated by pooling water behind the berms or socks.
7. Vegetative Buffers or Filter Strips: Vegetative buffers will be maintained near the perimeter of the property or natural stream to trap sediment, as appropriate.

The above specifications provide guidance to the Landfill Manager for selection of BMPs to control erosion and offsite sedimentation. At a minimum, drainage swales and downchutes will be installed on intermediate and final cover, as described in Subsections 6.4 and 6.5, respectively. The above referenced BMPs may be used separately or in combination with each other to control erosion and offsite sedimentation at the landfill. The following provides general guidelines on how the erosion control features will minimize erosion or sediment discharge from the site:

- The installation of erosion controls will be performed in conjunction with placement of intermediate cover and final cover. Final cover will be placed as areas of the landfill reach design final grades, followed by (1) placement of permanent erosion controls and (2) construction of drainage control structures, such as drainage swales and downchutes, vegetation, perimeter channels and detention ponds. The sequence of installing the perimeter drainage system is discussed in Subsection 6.6.
- Vegetation will be established on above-grade areas with intermediate cover and final cover following application of cover. The vegetative cover will substantially reduce erosion potential.
- Drainage swales and downchutes will be installed on intermediate and final cover at the frequency specified in Subsection 6.4 and Subsection 6.5, respectively. Other BMPs will be installed on an as-needed basis, as a result of cover inspections.
- Uncontaminated stormwater runoff from the landfill will be conveyed to the perimeter channels or detention basins by drainage swales/downchutes or overland flow before being discharged from the site. Sediment that collects in these drainage structures will be removed consistent with the stormwater system maintenance plan presented in Subsection 6.7.
- Site management will maintain coverage under the TPDES general stormwater permit, and will keep an updated version of the Storm Water Pollution Prevention Plan (SWP3) onsite.
- Runoff from the working face will be contained within the landfill by temporary containment and/or diversion berms, as described in Attachment 15 of this application.

6.3 SOIL STOCKPILES AND DAILY COVER EROSION CONTROL PRACTICES

Soil stockpiles and areas with daily cover are typically not vegetated, as these areas remain active for long periods of time. However, BMPs will be installed to reduce erosion and offsite sedimentation from these areas. At a minimum, BMPs will be installed down-gradient of daily cover areas and at the toe of soil stockpiles that have the potential to drain to the perimeter drainage
system or landfill property boundary. Any of the BMPs described in Subsection 6.2.3 may be installed to reduce erosion and offsite sedimentation. The effectiveness of the selected BMP will be evaluated during cover and BMP inspections, as described in Subsection 6.7.

6.4 INTERMEDIATE COVER EROSION CONTROL PRACTICES

All areas that receive waste and then become inactive for longer than 180 days will be covered with intermediate cover. Vegetation will be established on intermediate cover within 180 days following application of the intermediate cover. Vegetation will provide a minimum 60 percent ground coverage. When vegetation is being established, landfill personnel will perform cover inspections, as described in Subsection 6.7, and will continue to place temporary seed or sod until vegetation is established.

An overland flow velocity and soil loss demonstration for intermediate cover are included in Appendices 6A-E and 6A-F, respectively. These demonstrations are discussed in Subsections 2.2 and 2.3 of this attachment. As presented in the soil loss analysis, the maximum soil loss from the intermediate cover topslope and sideslope is estimated to be approximately 5.5 tons/acre/year and 43.0 tons/acre/year, respectively. The overland flow velocity demonstration indicates that velocities on intermediate cover topslopes and sideslopes will be less than 3 fps .

To maintain soil loss and overland flow velocities below the permissible limits, drainage swales will be installed on intermediate cover slopes every 400 horizontal feet or 100 vertical feet on a $4 \mathrm{H}: 1 \mathrm{~V}$ sideslope. Drainage swales will drain surface water to installed downchutes that discharge into the perimeter drainage system. Drainage swales and downchutes will be installed on intermediate cover within 180 days of the application of intermediate cover, assuming the external embankment sideslopes have been constructed to at least 100 -feet above natural grade. An example of drainage swales and downchutes installed on intermediate cover is shown on Drawing 6A-E. 3 and 6A-E.4. Other BMPs will be installed, as needed, as a result of cover and BMP inspections. BMPs will also be evaluated for effectiveness during the inspections. Installation specifications for structural BMPs are provided in Subsection 6.2.3.

6.5 FINAL COVER EROSION CONTROL PRACTICES

Final cover will be installed consistent with Attachment 12 - Final Closure Plan. The top 6 inches of the final cover will be capable of sustaining native vegetation. Areas that receive final cover will be vegetated immediately following completion of final cover placement. Vegetation will provide a minimum 90 percent ground coverage. When vegetation is being established, landfill personnel will perform cover inspection, as described in Subsection 6.7, and will continue to place seed or sod until 90 percent vegetated coverage is established.

An overland flow velocity demonstration and a soil loss demonstration for final cover are included in Appendices 6A-E and 6A-F, respectively. These demonstrations are discussed in Subsections 2.2 and 2.3. As presented in the soil loss analysis, the maximum soil loss from the final cover topslopes and sideslopes is estimated to be approximately 0.45 tons/acre/year and 2.70 tons/acre/year, respectively. The overland flow velocity demonstration indicates that velocities on final cover topslopes and sideslopes will be less than 5 fps.

Consistent with the proposed drainage design, drainage swales will be installed on final cover every 130 horizontal feet or 32.5 vertical feet on a $4 \mathrm{H}: 1 \mathrm{~V}$ sideslope. Drainage swales and downchutes will be installed on final cover during placement of final cover. Drainage swales and downchutes will be installed on final cover at the locations shown on Drawing 6A.3.

Potential soil loss from final cover will be mitigated by (1) periodic cover inspections and maintenance consistent with the Subsection 6.7, and (2) constructing the perimeter drainage system as described in Subsection 6.6, and (3) implementing BMPs upstream of the drainage features, within the drainage features, or at the offsite discharge outlets, as appropriate, to prevent offsite sedimentation. Prior to placement of final cover, temporary structural controls will be removed followed by the installation of the permanent structural controls. These BMPs will be removed in such a manner so as to minimize disturbance of the vegetative layer in place at the time of removal.

6.6 SEQUENCE OF DEVELOPMENT - PERIMETER DRAINAGE SYSTEM

During ongoing landfill development, drainage features, as described in Section 4 and depicted on Drawing 6A.3, including perimeter drainage channels and detention basins, will be constructed and maintained. The drainage features will be installed concurrent with the construction of upgradient landfill disposal cells, such that when the cell grades are above existing grade, downgradient drainage features are in-place. The sector fill layout, which depicts the sequence of sector development and direction of fill, is provided on Drawing 1.4 (see Attachment 1). Additionally, to control offsite sedimentation and reduce erosive velocities in the perimeter drainage system, vegetation or other approved structural controls (as described in Subsections 6.3 through 6.5 for the phases of landfill operation) will be installed for controlling erosion and offsite sedimentation.

During ongoing landfill development, prior to vegetation on the top dome surface and external embankment sideslopes (intermediate or final cover), BMPs described in Subsection 6.2.3 will be installed, as appropriate, to reduce sedimentation up-gradient of offsite discharge outlets. Landfill cover, BMP, and perimeter drainage system inspections will be performed, as described in Subsection 6.7.

6.7 STORMWATER SYSTEM INSPECTION AND MAINTENANCE PLAN

In accordance with 30 TAC $\S 330.305(\mathrm{e})(1)$, constructed stormwater systems such as channels, drainage swales, downchutes, and detention basins will be restored and repaired in the event of washout, failure, or erosion damage. In addition, other installed BMPs will be replaced or repaired, consistent with this inspection and maintenance plan.

Excessive sediment deposited during the landfill operations will be removed from the drainage features, as needed, so that the features will function as designed. Site inspections by landfill personnel will be performed daily for active daily cover areas, weekly for inactive daily cover and intermediate cover areas, monthly for final cover areas, or within 24 hours of significant rainfall events (a significant rainfall event being 0.5 inches or greater over a 24 -hour period). Site inspections will include both inspection of the landfill cover and in-place BMPs. Cover and BMP
inspections and maintenance will be documented in the Site Operating Record (as specified in the SOP). Daily inspections will be noted in the cover application log, and weekly and monthly inspections will be noted on the form or similar form provided in Appendix 6A-G - Erosion and Sedimentation Control Inspection and Maintenance Form.

The following items will be evaluated during the inspections:

- Erosion of daily, intermediate, and final cover areas; downchutes; drainage swales; detention basins; and other temporary and permanent drainage features.
- Adequate vegetation coverage for intermediate cover (60 percent minimum) and final cover (90 percent minimum).
- Silt and sediment build-up, or obstructions in temporary and permanent drainage features.
- Presence of erosion or sediment discharge at offsite discharge locations.
- Presence of sediment discharges along the site boundary in areas which have been disturbed by site activities.

Maintenance activities will be performed to correct damaged or deficient items noted during the cover and BMP inspections. These activities will be performed within 5 days of the inspection or detection of the damaged or deficiency, as described in the SOP. However, the timeframe for correction of damaged or deficient BMPs or erosion control structures may vary based on weather, ground conditions, and other site-specific conditions. Erosion of intermediate or final cover will be repaired by restoring the cover material, grading, compacting, and/or seeding or sodding, as described in the SOP.

Maintenance activities will include, but are not limited to, the following as needed:

- Placement of additional temporary or permanent vegetation in eroded areas or areas which have not achieved the required vegetative coverage.
- Placement of additional soils in eroded areas or areas which have settled. This will require re-grading and/or stabilization of soils in the eroded areas.
- Placement of additional rip rap, erosion control mats or TRMs, or other BMPs, as described in Subsection 6.2.3, in eroded areas or in area which have settled.
- Removal of obstructions, such as debris, silt, and sediment build-up from drainage features, including swales downchutes, perimeter channels, and detention basins.
- Replacement or repair of rip rap or other structural lining.
- Replacement or repair of permanent erosion mats or fabrics.
- Repairs to existing erosion and sedimentation controls.

DRAWINGS

6A.1A through 6A.16

APPENDIX 6A-A

HEC-HMS INPUT PARAMETERS

- Reservoir 19 (Elevation-Area-Discharge Relationship)
- Pre-development Subbasins
- Post-development Subbasins
- Post-development Perimeter Drainage Channels
- Post-Development Detention Basins (Elevation-Area-Discharge Relationships)
- Precipitation Data
- SCS Curve Numbers
- Manning’s Coefficients
- Kinematic Wave Method - Roughness Factors

SCS Engineers
TBPE Reg. \# F-3407

Inclusive of pages 6A-A-1 to 6A-A-29

RESERVOIR 19
 (ELEVATION-AREA-DISCHARGE RELATIONSHIP)

Elevation	Area (ff)	Area (acres)	$\begin{aligned} & \text { Principal Spillway } \\ & \hline \text { (Crest tat } 52.69-\text { FT. MSL) } \end{aligned}$			Culvert Discharge(Invert at 504.78 ft		Primary Discharge Structure Summary				Emergency Weir/Spillway Discharge Calculations				$\underset{\text { (efs) }}{\substack{\text { Totala Discharge }}}$	Use
			$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Head on } \\ \text { Spillway } \\ \text { (fft) } \end{array} \end{array}$	$\begin{gathered} { }^{2} \text { Orifice } \\ \text { Discharge } \\ \text { (cfs) } \end{gathered}$	$\underset{\substack{\text { Discharge } \\ \text { (efs) }}}{\substack{\text { DWeir }}}$	$\left\|\begin{array}{c} \text { Head on } \\ \text { Culvert (ft) } \end{array}\right\|$	$\begin{array}{\|c\|} \hline{ }^{3} \text { Culvert } \\ \text { Pipe } \\ \text { Discharge } \\ \text { (cfs) } \end{array}$	$\begin{gathered} \text { Orifice } \\ \text { Discharge } \end{gathered}$ (cfs)		$\begin{gathered} \text { Pipe } \\ \begin{array}{c} \text { Discharge } \\ \text { (efs) } \end{array} \\ \hline \end{gathered}$	$\underset{(\underset{\text { cfs }}{ } \mid}{\substack{\text { Dischare }}}$	Head on Weir (ft) (Crest at (Crest at 532 74$)$ 53.1	$\left\lvert\, \begin{gathered} \text { Weir } \\ \text { Coefficient } \end{gathered}\right.$	$\left\lvert\, \begin{array}{\|c\|} \hline \text { (ft) } \\ \text { Weir Length } \end{array}\right.$	Weir Discharge (cfs) ${ }^{4}$		
520.69	8,313,406	191	${ }^{0.0}$	0.00	0.00	15.91	76.74	0.00	0.00	76.74	0.00	0.00	2.60	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	Pond Pool
522	10,639,173	244	1.3	153.08	38.23	17.22	80.15	153.08	${ }^{38.23}$	80.15	38.23	0.00	2.60	0.0	${ }^{0.0}$	38.2	Pond Pool
524	13,243,602	304	3.3	${ }^{243.33}$	153.56	19.22	85.10	243.33	153.56	85.10	85.10	0.00	2.60	${ }^{0} 0$	0.0	85.1	Pond Pool
526	16,171,170	371	5.3	308.20	${ }^{312.02}$	21.22	89.77	308.20	312.02	89.77	89.77	0.00	2.60	${ }^{0} 0$	${ }_{0} 0$	89.8	Pond Pool
528	18,816,883	432	7.3	${ }^{361.62}$	503.98	23.22	94.21	${ }^{361.62}$	503.98	94.21	94.21	0.00	2.60	${ }^{0.0}$	${ }^{0.0}$	94.2	Pond Pool
530	22,496,378	516	9.3	408.10	724.38	25.22	98.46	408.10	724.38	98.46	98.46	0.00	2.60	0.0	${ }^{0} 0$	98.5	Pond Pool
532	26,446,863	607	11.3	449.80	969.92	27.22	102.52	449.80	969.92	102.52	102.52	0.00	2.60	309.5	0.0	102.5	Pond Pool
532.74	28,340,713	651	12.1	464.28	1066.65	27.96	103.99	464.28	1066.65	103.99	103.99	0.00	2.60	309.5	${ }^{0.0}$	104.0	Pond Pool
533	28,784,928	661	12.3	469.27	1101.35	28.22	104.50	469.27	1101.35	104.50	104.50	0.26	2.60	309.5	106.7	211.2	Pond Pool
533.5	29,529,181	678	12.8	478.70	1169.13	28.72	105.47	478.70	1169.13	105.47	105.47	0.76	2.60	309.5	533.2	638.7	Pond Pool
534	35,578,051	817	13.3	487.95	1238.25	29.22	106.43	487.95	1238.25	${ }^{106.43}$	106.43	1.26	2.60	309.5	1138.2	1244.6	Pond Pool
535	37,801,737	868	14.3	505.95	1380.38	30.22	108.34	505.95	1380.38	108.34	108.34	2.26	2.60	309.5	2734.2	2842.5	Pond Pool
536	40,175,155	922	15.3	${ }_{523.33}$	1527.58	31.22	110.21	${ }_{523.33}$	1527.58	110.21	110.21	3.26	2.60	309.5	4736.9	4847.1	Pond Pool

The weir equation was used for culvert discharge when under weir flow conditions and spillway discharge, as defined below:
${ }^{3}$ Spillway Outlet Pipe Equation was used for the Culvert Pipe Discharge
Where,

$$
Q=C L H^{1.5}(c f s)
$$

$\mathrm{C}=\quad$ Weir Coefficient, assumed to be 3.4 (average)

	$Q_{p}=A \sqrt{\frac{2 g H}{1+K_{e}+K_{b}+K_{c} L}}$
$\stackrel{\text { Qp }}{\mathrm{A}}=$	discharge through the principal spillway pipe (cfs) Cross-sectional area of pipe (fit)
H=	Cross-sectiona area of pipe (fi2)
$\mathrm{Ke}^{\text {e }}$	Entrance loss coefficient (1.0)
Kb $=$	Bend loss coefficient (0.5)
Kc $=$	Friction loss coefficient
	Length of the pip

	$k_{c}=087 n^{2}$	L=	165.1
	${ }^{\frac{d^{\frac{4}{3}}}{}}$	$\mathrm{Ke}^{\mathrm{K}=}$	1.0
	,	${ }_{\text {kb }}=$	0.5
${ }_{\text {d }}=$	Diameter of fhe principal spillway pipe (30 inches)	$\mathrm{n}=$	0.012

$C=3.27+0.4 \mathrm{H} / W$

$\mathrm{Ke}=$ Entrance loss coefficient at

When under orifice flow conditions, the culvert discharge was calculated using the orifice equation, as defined below:

$Q=C^{\prime} A \sqrt{2 g H}(c f s)$

Where,
$\mathrm{C}^{\prime}=$ orifice coefficient, assumed to be 0
$\mathrm{A}=\quad \begin{aligned} & \text { orfice coefficient, assumed to be } 0.8 \\ & \text { cross-sectional area of culvert, } \mathrm{ft}^{2}(30 \text {-inch culvert) }\end{aligned}$
$\mathrm{g}=$
$\mathrm{H}=$$\quad$ Gravitational Constant, 32.2 $\mathrm{f}^{2} / \mathrm{s}^{2}$


```
Discharge of an overflow spillway is given by the ogee weir equation
```

$$
Q=C_{w} L h^{3 / 2}
$$

$\mathrm{Q}=\quad$ discharge (cfis
$\mathrm{Cw}=$
coefficient
$\mathrm{L}=$ length of the crest $($ fif)
$\mathrm{L}=$ lengh of the crest (fi)
$\mathrm{h}=$ head on the spillway (vertical distance fiom the crest of the emergency spillway to the reservoir level (fit))
Reference: Formulas for ogee weir equation and coefficient values came from McGraw-Hill Series in Water Resources and Environmental Engineering. Linsley, Rav K., McGraw-Hill. Inc., 1992.

PRE-DEVELOPMENT SUBBASINS

epth $={ }^{4.25}$					inches Sheet Flow				Shallow Concentrated Flow				Open Channel Flow								Time of Concentration (Tc)				$\begin{gathered} \text { Total Lag Lag } \\ \text { Time } \end{gathered}$
$\begin{gathered} \text { Discharge Study } \\ \text { Point } \end{gathered}$	ContributingDrainage Areas	Drainage Areas		$\begin{gathered} \text { Curve } \\ \text { Number } \\ \text { Num) } \end{gathered}$	SurfaceDescription	${ }_{\text {Length }}$	Slope	Manning n	SurfaceDescription	Length	Slope	$\begin{gathered} \text { Avg. } \\ \text { Velocity } \end{gathered}$	SurfaceDescription Description	Length	Slope	Manning n	$\substack{\text { Cross- } \\ \text { sectional Area }}$ (ft2)	$\begin{gathered} \begin{array}{c} \text { Werted } \\ \text { Perimeter } \end{array} \\ \hline \text { (ft) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Hydraulic } \\ \text { Radius } \end{array} \\ \hline(\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Avg. } \\ \text { Velocity } \end{array} \\ \hline\left(\begin{array}{c} \text { fits) } \end{array}\right. \end{gathered}$	$\substack{\text { Sheet Flow } \\ T_{\mathrm{c}}}$ (\min)	$\substack{\text { Shallow } \\ \text { Concentrated Flow } \\ \mathbf{T}_{c}}$ (\min)	$\begin{gathered} \begin{array}{c} \text { Channel } \\ \text { Flow }{ }_{c} \end{array} \\ \hline(\min) \\ \hline \end{gathered}$	$\begin{gathered} {\text { Totala } \mathrm{T}_{\mathrm{c}}}_{{ }_{(\text {min })}} \end{gathered}$	
		(acres)	(sq. miles)			(feet)	(ffffi)			(feet)	(fffif)	(ftrs)		(feet)	(ffff)										(min)
POD-1	Pre-1	65	0.1022	75.3	Grass	300	0.010	0.15	Grass	${ }^{1466}$	0.014	0.8	Grass	2364	0.011	0.027	9.9	14.0	0.7	4.5	27	29	9	65	39
	os-5	8	0.0131	80.0	Grass	300	0.008	0.15	Grass	2149	0.010	0.7									29	51		81	48
PoD-2	Pre-2	16	0.0248	73.0	Grass	300	0.010	0.15	Grass	${ }^{1026}$	0.014	0.8	-	27	21	-	48	29
PoD-3	Pre-3	15	0.0235	73.0	Grass	300	0.023	0.15	Grass	1560	0.014	0.8	-	.	.	.	-	.	.	.	19	32	-	52	31
POD4	Pre-4	4	0.0056	73.0	Grass	300	0.023	0.15	Grass	172	0.017	0.9	-	.	-	.	-	.	.	.	19	3	-	22	13
POD-5	Pre-5	27	0.0422	73.0	Grass	300	0.020	0.15	Grass	1827	0.011	0.7	Grass	760	${ }^{0.012}$	0.027	5.1	10.5	0.5	3.8	20	42	3	65	39
PoD-6	Pre-6	3	${ }^{0.0043}$	73.0	Grass	300	0.007	0.15	Grass	458	0.009	0.7		.			.		.	,	31	12	-	${ }^{43}$	26
PoD-7	Pre-7	15	${ }_{0}^{0.0233}$	${ }^{73.0}$	Grass	300	${ }_{0} 0.031$	0.15	Grass	1572	0.012	0.8	-	.	.	.	-	.	-	.	17	35	-	52	31
POD-8	Pre-8A	56	0.0873	73.8	Grass	300	${ }^{0.005}$	0.15	Grass				Grass	3100	0.001	0.027	22.7	15.3	1.5	2.3	36		23	59	
	Pre-8B	33	0.0510	77.4	Grass	300	0.009	0.15	Grass	991	0.011	0.7	Grass	${ }_{2} 2723$	0.007	0.027	12.2	22.0	${ }_{0.6}$	${ }_{3.2}^{2 .}$	${ }^{36}$	23	14	66	39
	${ }_{\substack{\text { Pre.8C }}}^{\substack{\text { Pre.s }}}$	197	${ }^{0.3085}$	73.1 7.8	Crass	300	0.007	0.15	Grass				Grass	8902	0.001	0.027	46.6	25.0	1.9	${ }_{3} 3$	30	${ }^{23}$	4	100	
	${ }_{\text {Pre-sD }}^{\text {OS-1 }}$	49 1011	$\frac{0.0770}{1.5800}$	74.8 79.7	${ }_{\text {Grass }}$ Grass	300 300	0.009 0.013	0.15 0.15 0.0	Grass	1395 2460	0.013 0.013	0.8 0.8	$\stackrel{\text { Grass }}{ }$	11834	0.006		137.1	110.4	1.2	5.1	28 24	${ }_{5}^{29}$	39	57 115	34 69 6
	Os-2	1011 17	${ }^{1.5800}$	79.0 80.	Grass	${ }_{300}$	0.0 .017	0.15	Grass	${ }_{1133}^{2400}$	${ }_{0.016}^{0.016}$	${ }_{0}^{0.9}$	${ }_{\text {Grass }}$	${ }_{920}$	${ }_{0}^{0.0006}$	${ }_{0}^{0.027}$	${ }_{6} 6.8$	9.3	${ }_{0}^{1.7}$	4.6	${ }_{22}$	${ }_{22}$	39	47	${ }_{28}$
	OS.3	15	${ }^{0.0233}$	80.0	Grass	300	${ }^{0.005}$	${ }^{0.15}$	Grass	611	0.015	0.8									${ }^{37}$	12		49	
	OS-4	6	${ }_{0}^{0.0095}$	80.0	Grass	198	0.009	0.15					-		.						20			20	12
PoD-9	Pre-9	2	0.0029	73.0	Grass	300	0.002	0.15	Grass	164	0.004	0.5	.	-	.	.	-	.			48	6	-	54	${ }^{33}$
POD-10	Pre-10A	5	0.0085	80.0	Grass	300	0.032	0.15	Grass	488	0.012	0.8	-		-		-				17		-	17	10
	Pre-10B		${ }^{0.0135}$	79.6	Grass	300	0.010	0.15	Grass	1216	0.008	0.6								.	27	32	.	59	

Note:
Methodology:
Reference: United States Department of Agriculture. Hydrology National Engineering Handbook, Part 630 (May 2010). Chapter 15 , Time of Concentration.

$$
\begin{aligned}
& \text { Sheet Flow } T_{c} \\
& T_{t}=\frac{0.007(n n)^{0.8}}{\left(P_{2}\right)^{0.5} 5^{0.4}} \quad(\text { ep. } 15-8) \\
& \stackrel{\text { where: }}{\mathrm{T}_{\mathrm{t}}=}
\end{aligned}
$$

Channel Flow T_{c}
$\mathrm{V}=\frac{1.49 \mathrm{r}^{2} \frac{1}{3} \frac{1}{2}}{n}$
where:
$\begin{array}{ll}\mathrm{V}== & \begin{array}{l}\text { Average velocity, ff/s } \\ \mathrm{r}=\end{array} \\ \text { hydrallic radius, ft }\end{array}$ $\stackrel{\text { hydraulic }}{\substack{a \\ p_{w}}}$
$a=$ cross.sectional flow area,
$\mathrm{P}_{\mathrm{w}}=$ Weted perimeter ft

$s=$	
$\mathrm{n}=$	$\begin{array}{l}\text { slope of the hycraulic, grade line, ffltit } \\ \text { Manning's nvalue for open channel flow }(0.027, \text { grass })\end{array}$

CITY OF WACO LANDFILL
SCS METHOD INPUT PARAMETERS

- PRE-DEVELOPMENT CONDITIONS -

Discharge Study Point	Reach	Stream Length	Y	Manning's n	Bottom Width	Side Slope
		(feet)	(feet/foot)		(feet)	(xH:1V)
POD-1	Pre-1 PW	2364	0.011	0.033	38.9	4.44
POD-8	Pre-8A HC	3400	0.001	0.033	33.0	2.33
POD-8	Pre-8C HC	8902	0.001	0.033	28.8	2.33
POD-8	OS-3 REACH	2039	0.003	0.033	5.0	10.00
POD-10	Pre-10 TK Parkway	1216	0.008	0.033	17.8	0.12

Note:

Manning's "n" used for drainage channels, rip rap or TRM lined, established channels.
Reference: C.T. Haan, B.J. Barfield, J.C. Hayes. Design Hydrology and Sedimentology for Small Catchments. Academic Press. 1994.

POST-DEVELOPMENT SUBBASINS

CITY OF WACo LaNDFILL
KINEMATIC WAVE INPUT PARAMETERS
POST-DEVELOPMENT CONDITIONS

$\underbrace{\text { Discharge Study }}_{\text {Point }}$	$\begin{gathered} \text { Contributing } \\ \text { Drainage Areas } \end{gathered}$	Drainage Plane			Collector							Main Channel					$\overline{\substack{\text { Area (sq. } \\ \text { mi.) }}}$	$\begin{gathered} \hline \hline \text { Curve } \\ \text { Number } \\ \text { (CN) } \end{gathered}$	SCS Method				
		Length	Slope	Roughness	Area	$\begin{gathered} \text { No. of } \\ \text { Collectors } \end{gathered}$	Length	Slope	Manning's Coefficient	$\begin{array}{l\|} \hline \text { width } \\ \hline(\mathrm{ft}) \\ \hline \end{array}$	Sideslope xH:IV	$\begin{gathered} \text { Length } \\ \hline(\mathrm{ft}) \\ \hline \end{gathered}$	$\frac{\text { Slope }}{(\text { fitfit) }}$	Manning's Coefficient	$\begin{array}{\|c\|} \hline \text { Width } \\ \hline(\mathrm{ft}) \\ \hline \end{array}$	$\begin{aligned} & \text { Sideslope } \\ & \hline \mathrm{xH}: 1 \mathrm{~V} \\ & \hline \end{aligned}$			$\frac{\text { Stream Length }}{(\mathrm{ft})}$		Manning n	Sheet Flow T_{c}	$\begin{aligned} & \text { Lag Time } \\ & \hline(\min) \\ & \hline \end{aligned}$
		(fit)	(fiffe)		(sq. mil.)		(fit)	(tiffit												(ftffit			
POD-1	DA-IA	130	0.25	0.15	0.00395	9	847	0.01	0.027	0	3	536	0.25	0.033	15	2	0.0355	85.0	-	-	.	-	-
	DA-1B	189	0.05	0.15	-	-			-	.	-	906	0.01	0.027	0	3	0.0055	85.0	-				
	*DA-IC	-	-	-	-	.	.	0.0042	85.0	179	0.0100	0.15	17.87	11
	*DA-ID	.	-	-	0.0023	85.0	138	0.0100	0.15	14.52	9
	**DA-IE	.	-	-	-	0.0019	85.0	179	0.2500	0.15	4.92	5
POD-8	DA-2A	130	0.25	0.15	0.00353	8	757	0.01	0.027	0	3	950	0.25	0.033	15	2	0.0282	85.0	-	-	.	.	.
	DA-2B	117	0.05	0.15	-	-	-	-	-	.	-	496	0.01	0.027	0	3	0.0030	85.0	-	-	.	-	.
	DA-3A	130	0.25	0.15	0.00373	10	799	0.01	0.027	0	3	634	0.25	0.033	15	2	0.0373	85.0	-	-	.	.	.
	DA-3B	179	0.05	0.15	-	808	0.01	0.027	0	3	0.0040	85.0	-	-	.		.
	DA. 3 C	130	0.25	0.15	0.00421	10	903	0.01	0.027	0	3	568	0.25	0.033	15	2	0.0421	85.0	-	-	.	-	.
	DA-3D	161	0.05	0.15	-	.	-	-	-	.	-	822	0.01	0.027	0	3	0.0040	85.0	-	-	-	-	-
	DA-3E	130	0.25	0.15	0.00376	9	807	0.01	0.027	0	3	693	0.25	0.033	15	2	0.0339	85.0	-	-	.	-	-
	DA-3F	181	0.05	0.15	-	.	.	-	-	.	-	866	0.01	0.027	0	3	0.0227	85.0	-	-	.	.	.
	DA-4A	130	0.25	0.15	0.00375	8	804	0.01	0.027	0	3	438	0.25	0.033	15	2	0.0300	85.0	-	-	-	-	-
	DA-4B	236	0.05	0.15	-	-		.	-		-	56	0.01	0.027	0	3	0.0050	85.0	-	-	.	.	.
	DA-4C	130	0.25	0.15	${ }^{0.00324}$	6	694	0.01	0.027	0	3	387	0.25	0.033	15	2	0.0194	85.0	-	-	.	.	.
	DA-4D	218	0.05	0.15	-	.	-	.	-	.	.	368	0.01	0.027	0	3	0.0027	85.0	-	-		.	
	*DA-4E	-		-	-	-	-	-	-	-	-	-	-	-			0.0047	85.0	104	0.0100	0.15	11.54	7
	DA.SA	130	0.25	0.15	0.00484	7	1038	0.01	0.027	0	3	844	0.25	0.033	15	2	0.0379	85.0	-	-	-	-	.
	DA-SB	176	0.05	0.15	-	.	-	-	-	.	.	554	0.01	0.027	0	3	0.0036	85.0	-	-	.	.	.
	DA.SC	130	0.25	0.15	0.00199	5	427	0.01	0.027	0	3	370	0.25	0.033	15		0.0099	85.0	-	-	-	.	.
	DA.SD	242	0.05	0.15	-	.		-	-	.	.	491	0.01	0.027	0	3	0.0048	85.0	-	-	-	-	.
	${ }^{*}$ DA-5E				.	-			.	.							0.0033	85.0	96	0.0100	0.15	10.87	7

Note:
.Drainage areas indicated with an asterisk, include areas modeled using the Velocity method, as described in Attachment 6 A, Section 2.2

Open Channel Flow								
SurfaceDescription	gth	Slope (fffif)	Manning n	Cross-sectional Area	$\begin{gathered} \begin{array}{c} \text { Wetted } \\ \text { Perimeter } \end{array} \end{gathered}$	Hydraulic Radius	Avg. Velocity	Channel Flow $\mathrm{T}_{\text {c }}$
	(feet)	(ffffit)		(f12)	(fit)	(fit)	(ft/s)	(in)

	$\mathrm{a}(\mathrm{ft})$	$\mathrm{d}(\mathrm{ft})$	left slope	righ slope $(\%)$	Area (fi2)	Wetted $\mathrm{P}(\mathrm{ft})$
	2.85	1.0	32.0	37.0	5.8	9.0

4.25 imches Sheet Fow								Shallow Concentrated Flow				Open Channel Flow								Time of Concentration (Tc)				$\begin{gathered} \text { Total Lag } \\ \text { Time } \end{gathered}$
$\begin{gathered} \text { Discharge Study } \\ \text { Point } \end{gathered}$	$\begin{gathered} \text { Contributing } \\ \text { Drainage Areas } \end{gathered}$	$\underset{\substack{\text { Area (s. }(\mathrm{s}, \\ \text { mi.) }}}{ }$	$\begin{array}{\|c\|} \text { Curve Number } \\ \text { (CN) } \end{array}$	SurfaceDescription	Length	Slope	Manning n	SurfaceDescription	Length	Slope	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \text { velocity } \end{array}$	SurfaceDescription	$\begin{array}{\|c\|c\|} \hline \text { Length } \\ \hline \text { (feet) } \end{array}$	Slope (fffit)	Manning n	$\begin{aligned} & \text { Cross } \\ & \text { section } \\ & \text { section } \\ & \text { Afra) } \\ & \hline \text { (fi2) } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Werienere } \end{array}$		$\frac{\text { Avg. Velocity }}{(\mathrm{fftss)}}$	$\begin{array}{\|c\|} \hline \text { Sheet Flow } \\ \mathbf{T}_{\mathrm{c}} \\ \hline \text { (min) } \\ \hline \end{array}$	Shallow Concentrated Flow 1 (min)	Channel Flow T ${ }_{\text {c }}$	Total Tc	
					(feet)	(ffffi)			(feet)	(ffffi)	${ }_{\text {(fts) }}$													(min)
PoD-1	PRE-IR	0.0149	74.7	Grass	262	0.021	0.15	.				Grass	472	${ }^{0.028}$	0.027	5.8	9.0	${ }^{0.6}$	6.9	18		1		11
	OS-5	0.0131	80.0	Grass	300	0.008	0.15	Grass	2149	0.010	0.7	.			.		.			29	51		81	48
	EDA East	0.0030	99.0		-							-		.	-	-	-	-						1
POD-2	PRE-2R	0.0086	73.0	Grass	300	0.009	0.15	-	.		-	-	.	.	-	28	.	.	28	17
POD-3\&4	PRE-3R	0.0207	73.0	Grass	300	0.014	0.15	Grass	1045	0.014	0.8	-	-	-	-	-	-	.	.	24	21	-	45	27
	PRE-4R	0.0056	73.0	Grass	300	0.013	0.15	Grass	172	0.017	0.9	-	.	-	.		-	-	-	24	3	-	27	16
POD-5\& 6	PRE-SR	0.0352	${ }^{73.0}$	Grass	300	0.017	0.15	Grass	1287	${ }_{0}^{0.017}$	0.9	Grass	760	0.013	0.027	5.1	10.5	0.5	3.8	22	24	3	49	29
	PRE-6R	0.0043	${ }^{7} 3.0$	Grass	300	0.007	0.15	Grass	458	0.009	0.7	-	-	-	-	-	-	.	-	31	12	-	43	26
POD-7	PRE-7R	0.0223	${ }^{7} 3.0$	Grass	300	0.028	0.15	Grass	1375	${ }^{0.010}$	0.7	-	-	-	-	-	-	-	-	18	33	-	51	${ }^{30}$
PoD-8	PRE-8ABR	0.0847	73.8	Grass	300	0.005	0.15	Grass				Grass	3100	0.001	0.027	22.7	15.3	1.5	2.3	36		23	59	${ }^{35}$
	PRE-8CR	0.1898	73.1		-	-	-	Grass	613	0.018	0.9	Grass	8832	0.001	0.027	40.6	24.3	1.7	2.9	-	11	51	62	37
	PRE-8DR	0.0312	${ }^{7} 3.7$	Grass	300	0.010	0.15	Grass	1466	0.012	0.8	-	-	-	-	-	-		-	27	32		59	35
	OS-1	1.5800	79.7	Grass	300	0.013	0.15	Grass	2460	0.013	0.8	Grass	11834	0.006	0.027	137.1	110.4	1.2	5.1	24	52	39	115	69
	OS-2	0.0580	80.0	Grass	300	0.017	0.15	Grass	1133	0.016	0.9	Grass	920	0.011	0.027	6.8	9.3	0.7	4.6	22	22	3	47	28
	OS-3	0.0233	80.0	Grass	300	0.005	0.15	Grass	611	0.015	0.8									37	12	-	49	29
	EDA WEST	0.0120	99.0		-			.	-			-		.	-	-	.	-			-	-		1
	WDA	0.0100	99.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.	1
POD-9	PRE-9R	0.0029	73.0	Grass	300	0.002	0.15	Grass	164	${ }^{0.004}$	${ }^{0.5}$.	-	.	.	.	-	.	.	${ }^{48}$	6		54	${ }^{33}$
POD-10	PRE-10AR	0.0016	80.0	Grass	300	${ }_{0}^{0.014}$	0.15	Grass	678	0.008	0.6	-	${ }^{23}$	18	.	42	25
	PRE-108R	0.0029	80.0	Grass	300	0.007	0.15	Grass	946	0.009	0.7	-		-	-		-		-	32	23	-	55	${ }^{33}$
PoD-11	PRE-11R	0.0100	80.0	Grass	300	0.015	0.15	Grass	516	0.021	1.0									23	9	.	31	19

Channel Section:
$\underbrace{\hat{\mathrm{f}}_{\mathrm{d}}}_{\text {a }}$

\section*{$\underset{\substack{\text { Totala Area } \\ \text { Total } \\ \text { Total } \text { rea } \\=}}{ }$
 | 2.14 sq. miles |
| :--- |
| $\begin{array}{l}1372 \text { ares } \\ 292 \text { acres }\end{array}$ |}

	a (f)	$\mathrm{d}(\mathrm{ft})$	$\underbrace{\text { cose }}_{\substack{\text { left slope } \\ \text { (0) }}}$	$\xrightarrow{\text { right slope }}$	Area (fir)	Weted $\mathrm{P}(\mathrm{ft})$	2 -year, 24 hour		
PRE-IR Channel Section:	2.85	1.0	32.0		5.8	9.0	Q22yr:	${ }^{16,9}$	$\mathrm{cfs}^{\text {d }}$
PRE-SR Chanel Section:	$\frac{3.19}{2.75}$	${ }_{0}^{0.8}$	$\frac{15.5}{540}$	- $\begin{gathered}31.0 \\ 320\end{gathered}$	${ }_{5}^{5.1}$	$\frac{10.5}{153}$	Q2yr:	$\frac{16.2}{162}$	${ }_{\text {cff }}$
PRE--CR Chamnel Section:	$\frac{2.75}{4.65}$	2.9			${ }_{40.6}^{22.6}$	${ }_{25.3}$	$\frac{0^{2}}{02 \mathrm{yr}}$	$\frac{44.5}{94.5}$	${ }_{\text {cts }}$
OS-1 Channe Section:	42.00	1.8	${ }^{7.7}$	4.0	${ }_{137.1}$	110.4	$\mathrm{Q}^{2} \mathrm{yr}$:	710.3	S
OS-2 Channel Section:	0.75	1.6	27.1	85.1	6.8	9.3	Q2 yr:	44.6	cfs

Methodology:
Reference: United States Department of Agriculture. Hydrology National Engineering Handbook, Part 630 (May 2010). Chapter 15, Time of Concentration.

Sheet Flow T_{c}		Shallow Concentrated Flow $T_{\text {c }}$
	$0.007(n)^{0.8}$	
		where: $\quad 6.962(\mathrm{~s})$
where:		$\mathrm{V}=\quad$ Average velocity, ft / s
$\mathrm{T}_{\mathrm{t}}=$	travel time, h	slope of the hydralic grade line, ff/tt
$\stackrel{\mathrm{n}}{1} \mathrm{=}$	sheet flow length, ft	(Table 15-3 for Short-grass pasture flow type)
$\mathrm{P}_{2}=$	2 -year, 24-hour rainfall, in (4.25 inches)	
$\mathrm{s}=$	slope of land surface, ff/tt	

```
Channel Flow T
```



```
where:
V= 
    = =\frac{a}{\mp@subsup{P}{w}{\prime}}
    a = cross-sectional flow area,f12
    a
= \quad llope of the hydraulic grade line,ff/ft ( % (0.277, grass)
```


POST-DEVELOPMENT PERIMETER DRAINAGE CHANNELS

Channel Name	Receiving Basin	Receiving POD	Channel Length (ft)	$\begin{array}{\|c\|} \hline \hline \text { Bottom } \\ \text { Slope }(\mathbf{f t} / \mathbf{f t}) \\ \hline \end{array}$	Bottom Width (ft)	Sideslope (XH:1V)	Depth (ft)	Mannings Coefficient	Lining Material
1A1	EDA EAST BASIN	POD 1	404	0.0100	5	3	2.00	0.027	Grass
1A2	EDA EAST BASIN	POD 1	1,274	0.0080	5	3	2.00	0.027	Grass
1A3	EDA EAST BASIN	POD 1	348	0.0025	10	3	3.50	0.027	Grass
1A4	EDA EAST BASIN	POD 1	711	0.0220	10	3	3.00	0.033	TRM/Rip Rap
2A1	EDA WEST BASIN	POD 8	223	0.0225	10	3	2.25	0.033	TRM/Rip Rap
2A2	EDA WEST BASIN	POD 8	818	0.0070	10	3	3.00	0.027	Grass
2A3	EDA WEST BASIN	POD 8	762	0.0225	10	3	3.00	0.033	TRM/Rip Rap
2A4	EDA WEST BASIN	POD 8	1,159	0.0025	10	3	3.00	0.027	Grass
2A5	EDA WEST BASIN	POD 8	852	0.0025	10	3	4.05	0.027	Grass
3A1	EDA WEST BASIN	POD 8	2,037	0.0025	10	3	3.20	0.027	Grass
4A1	WDA BASIN	POD 8	434	0.0025	5	3	2.00	0.027	Grass
4A2	WDA BASIN	POD 8	416	0.0300	5	3	2.00	0.027	Grass
4A3	WDA BASIN	POD 8	338	0.0150	10	3	2.30	0.033	TRM/Rip Rap
4A4	WDA BASIN	POD 8	1,636	0.0060	10	3	2.50	0.027	Grass
4A5	WDA BASIN	POD 8	240	0.0025	10	3	3.00	0.027	Grass
4B1	WDA BASIN	POD 8	448	0.0060	5	3	2.00	0.027	Grass
4B2	WDA BASIN	POD 8	104	0.0190	5	3	2.00	0.027	Grass
4B3	WDA BASIN	POD 8	714	0.0070	10	3	2.20	0.027	Grass
4B4	WDA BASIN	POD 8	341	0.0100	10	3	2.20	0.027	Grass
4B5	WDA BASIN	POD 8	699	0.0065	10	3	2.23	0.027	Grass
4B6	WDA BASIN	POD 8	495	0.0100	10	3	2.20	0.027	Grass
4B7	WDA BASIN	POD 8	245	0.0100	10	3	3.70	0.033	TRM/Rip Rap
4B8	WDA BASIN	POD 8	1,406	0.0025	11	3	3.74	0.027	Grass

[^0]
POST-DEVELOPMENT DETENTION BASINS (ELEVATION-AREA-DISCHARGE RELATIONSHIPS)

CITY OF WACO LANDFILL
Elevation-Area-Discharge Relationship

- EDA East Basin -

Elevation	Area (sf)	Area (acres)	Head on Weep Holes (Ft)	Head on Weir (ft)	Weir Coefficient	Weir Length (ft)	Weir Discharge (cfs) $\mathbf{1}^{2}$	Weep Hole Discharge (cfs)	Total Discharge (cfs)	Use
54	$49,514.68$	1.14	0.0	0.0	3.1	10.0	0.0	0.0	0.0	Basin Pool
535	$52,966.87$	1.22	1.0	0.0	3.1	10.0	0.0	2.8	2.8	Sediment Control
536	$56,478.70$	1.30	2.0	0.5	3.1	10.0	11.0	4.0	14.9	Sediment Control
537	$60,011.74$	1.38	3.0	1.5	3.1	10.0	57.0	4.9	61.8	Basin Pool
538	$63,558.26$	1.46	4.0	2.5	3.1	10.0	122.5	5.6	128.1	Basin Pool
539	$67,204.19$	1.54	5.0	3.5	3.1	10.0	203.0	6.3	209.2	Free Board
540	$70,951.57$	1.63	6.0	4.5	3.1	10.0	295.9	6.9	302.8	Free Board

${ }^{1}$ Weir discharge was calculated using the weir equation, as defined below:

$$
Q=C L H^{1.5}(c f s)
$$

Where,

$$
\begin{array}{ll}
\mathrm{C}= & \text { Weir Coefficient, assumed to be } 3.1 \text { (average) } \\
\mathrm{L}= & \text { Weir Length, } \mathrm{ft} \\
\mathrm{H}= & \text { Hydrostatic Head, } \mathrm{ft}
\end{array}
$$

${ }^{2}$ Weep hole discharge was calculated using the orifice equation for 4 -inch diameter weep holes, as defined below:

$$
Q=N C^{\prime} A \sqrt{2 g H}(c f s)
$$

Where,

$\mathrm{N}=$	number of weep holes, half the weir length
$\mathrm{C}^{\prime}=$	orifice coefficient, assumed to be 0.8
$\mathrm{~A}=$	cross-sectional area of one hole, ft^{2}
$\mathrm{~g}=$	Gravitational Constant, $32.2 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$\mathrm{H}=$	Hydrostatic Head, ft

CITY OF WACO LANDFILL
Elevation-Area-Discharge Relationship

- EDA West Basin -

Elevation	Area (sf)	Area (acres)	Head on Weep Holes (Ft)	Head on Weir (ft)	Weir Coefficien t	$\left\lvert\, \begin{gathered} \text { Weir } \\ \text { Length }(\mathbf{f t}) \end{gathered}\right.$	Weir Discharge $(\mathrm{cfs})^{1}$	Weep Hole Discharge $\left(\right.$ (cfs) ${ }^{2}$	Total Discharge (cfs)	Use
530	238,888	5.48	0.0	0.0	3.1	7.0	0.0	0.0	0.0	Basin Pool
531	249,024	5.72	0.5	0.0	3.1	7.0	0.0	1.4	1.4	Sediment Control
532	259,232	5.95	1.5	0.0	3.1	7.0	0.0	2.4	2.4	Sediment Control
533	269,512	6.19	2.5	0.0	3.1	7.0	0.0	3.1	3.1	Basin Pool
534	279,864	6.42	3.5	0.0	3.1	7.0	0.0	3.7	3.7	Basin Pool
535	290,287	6.66	4.5	0.5	3.1	7.0	7.7	4.2	11.8	Basin Pool
536	300,782	6.91	5.5	1.5	3.1	7.0	39.9	4.6	44.5	Basin Pool
537	311,349	7.15	6.5	2.5	3.1	7.0	85.8	5.0	90.8	Free Board

${ }^{1}$ Weir discharge was calculated using the weir equation, as defined below:

$$
Q=C L H^{1.5}(c f s)
$$

Where,
$\begin{array}{ll}\mathrm{C}= & \text { Weir Coefficient, assumed to be } 3.1 \text { (average) } \\ \mathrm{L}= & \text { Weir Length, } \mathrm{ft}\end{array}$
$\mathrm{H}=\quad$ Hydrostatic Head, ft
${ }^{2}$ Weep hole discharge was calculated using the orifice equation for 4-inch diameter weep holes, as defined below:

$$
Q=N C^{\prime} A \sqrt{2 g H}(c f s)
$$

Where,
$\mathrm{N}=\quad$ number of weep holes, half the weir length
$\mathrm{C}^{\prime}=\quad$ orifice coefficient, assumed to be 0.8
$\mathrm{A}=$ cross-sectional area of one hole, ft^{2}
$\mathrm{g}=\quad$ Gravitational Constant, $32.2 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$\mathrm{H}=\quad$ Hydrostatic Head, ft

CITY OF WACO LANDFILL
Elevation-Area-Discharge Relationship

- WDA Basin -

Elevation	Area (sf)	Area (acres)	Head on Culvert (ft)	Culvert Pipe Discharge (cfs)	Number of Culverts	Total Discharge (cfs)	Use
531	227,807	5.2	0.0	0.00	2.00	0.0	Basin Invert
532	234,065	5.4	0.0	0.00	2.00	0.0	
533	240,371	5.5	0.0	0.00	2.00	Sediment Control	
534	246,752	5.7	0.0	0.00	2.00	0.0	Basin Pool
535	253,209	5.8	0.5	0.00	2.00	0.0	Basin Pool
536	259,740	6.0	1.5	7.72	2.00	15.4	Basin Pool
537	266,346	6.1	2.5	13.85	2.00	36.0	Basin Pool
538	273,028	6.3	3.5	18.00	Bree Board		

Spillway Outlet Pipe Equation was used for the Culvert Pipe Discharge
Where,

$$
Q_{p}=A \sqrt{\frac{2 g H}{1+K_{e}+K_{b}+K_{c} L}}
$$

	$\mathrm{Qp}=$ discharge through the principal spillway pipe (cfs) $\mathrm{A}=$ Cross-sectional area of pipe $(\mathrm{ft} 2)$ $\mathrm{H}=$ Head above center of pipe at the outfall (ft) $\mathrm{Ke}=$ Entrance loss coefficient (1.0) $\mathrm{Kb}=$ Bend loss coefficient (0.5) $\mathrm{Kc}=$ Friction loss coefficient $\mathrm{L}=$ Length of the pipe (ft)		
	$K_{c}=\frac{5087 n^{2}}{d^{\frac{4}{3}}}$	$\begin{aligned} & \mathrm{L}= \\ & \mathrm{Ke}= \\ & \mathrm{Kb}= \end{aligned}$	25.0 1.0 0.5
$\mathrm{n}=$	Manning's coefficient; and	$\mathrm{Kc}=$	0.013
$\mathrm{d}=$	Diameter of the principal spillway pipe (30 inches)	$\begin{aligned} & \mathrm{n}= \\ & \mathrm{d}= \end{aligned}$	$\begin{array}{r} 0.012 \\ 21.0 \end{array}$

*Reference: Manning's coefficent and entrance, friction, and bend coefficients came from Design Hydrology and Sedimentology for Small Catchments. E . Academic Press, 1994.

PRECIPITATION DATA

Design Hydrology and Sedimentology for Small Catchments

C. T. Haan

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahoma

B. J. Barfield

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahómà

J. C. Hayes

Agricultural and Biological Engineering Department Clemson University
Clemson, South Carolina

A

Academic Press

An Imprint of Elsevier
Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo

SCS CURVE NUMBERS

United States Department of Agriculture

Natural

Resources Conservation Service

Conservation

 Engineering
Urban Hydrology for Small Watersheds

TR-55

Technical
Release 55
June 1986

Chapter 2

Estimating Runoff
Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2a
Runoff curve numbers for urban areas $1 /$

Chapter 2

Estimating Runoff
Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2c \quad Runoff curve numbers for other agricultural lands $\underline{1 /}$

Pre-Development

MANNING'S COEFFICIENTS

Waco Texas Landfill
 Hydraulic Analysis Manning's " n " References

Pre-development Conditions

Description	Use	Reference	Mannings "n"
Natural winding streams and creeks.	HEC-HMS Kinematic Wave Method (main channel).	See Item 1, Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al.	0.040
Shallow preferential flow paths or ditches, i.e., channel not well defined.	HEC-HMS Kinematic Wave Method (main channel).	See Item 2, Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al.	0.030
Straight man-made road side ditches, established channels.	HEC-HMS Kinematic Wave Method (main channel).	See Item 3, Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al.	0.027

Post-development Conditions

Description	Use	Reference	Mannings "n"
Drainage swales, short grass and some weeds, established channels.	HEC-HMS Kinematic Wave Method model (collector or main channel).	See Item 3, Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al.	0.027
Downchutes, gabion or rip rap lined, established channels.	HEC-HMS Kinematic Wave Method model (main channel)..	HydroCalc standard default for built-up channels with rip rap.	0.033
Drainage Channels, short grass and some weeds, established channels	HEC-HMS Muskingum-Cunge Standard model for routing reaches.	See Item 3, Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al.	0.027
Drainage Channels, rip rap or TRM lined, established channels.	HEC-HMS Muskingum-Cunge Standard model for routing reaches.	HydroCalc standard default for built-up channels with rip rap.	0.033
CMP channel or detention basin outlet structures	HydroCalc calculations for CMPs.	Standard default in HydroCalc program for CMP.	0.024

Note: Manning's " n " used for drainage swales, downchutes, and culverts were incorporated into HEC-HMS, as well as the Hydraulic Analysis using HydroCalc.
Reference: C.T. Haan, B.J. Barfield, J.C. Hayes. Design Hydrology and Sedimentology for Small Catchments. Academic Press. 1994.

Design Hydrology and Sedimentology for Small Catchments

C. T. Haan

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahoma

B. J. Barfield

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahómà

J. C. Hayes

Agricultural and Biological Engineering Department Clemson University
Clemson, South Carolina

A

Academic Press

An Imprint of Elsevier
Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo

An Irish engineer named Manning found that the equation

$$
v=K R^{2 / 3} S^{1 / 2}
$$

fit experimental data quite nicely. This equation is known as Manning's equation and differs from Chezy's equation only in the exponent on R. So that the factor related to the channel roughness would increase as roughness increased, Manning's equation is generally written as

$$
v=(1 / n) R^{2 / 3} S^{1 / 2}
$$

in the metric system with v in meters per second and R in meters. The coefficient n is known as Manning's n. In the English system of units, Manning's equation is

$$
\begin{equation*}
v=\frac{1.49}{n} R^{2 / 3} S^{1 / 2}, \tag{4.23}
\end{equation*}
$$

where v is in fps, R is in feet, and S is in feet per foot. Tables of Manning's n are widely available. Table 4.1 is such a table taken from several sources, drawing heavily on Schwab et al. (1966, 1971). Manning's n is influenced by many factors, including the physical roughness of the channel surface, the irregularity of the channel cross section, channel alignment and bends, vegetation, silting and scouring, and obstruction within the channcl. Chow (1959) displays some photographs of typical channels and the associated valucs for Manning's n.

Figure 4.9 contains some useful relationships for calculating the hydraulic properties of A, P, R, and top width, T, for three common channels. For natural channels, these properties are best determined from measurements based on the actual cross sections of the channel.

Table 4.1 Typical Values for Manning's n

eSelected from numerous sources

KINEMATIC WAVE METHOD - ROUGHNESS FACTORS

United States Department of Agriculture

Natural

Resources Conservation
Service

Conservation

 Engineering
Urban Hydrology for Small Watersheds

TR-55

Technical
Release 55
June 1986

Technical Release 55
Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1 Roughness coefficients (Manning's n) for sheet flow

Surface description	n ${ }^{1 /}$
Smooth surfaces (concrete, asphalt, gravel, or bare soil) \qquad	
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover $\leq 20 \%$	0.06
Residue cover > 20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ${ }^{2 /}$	0.24
Bermudagrass	0.41
Range (natural).	0.13
Woods:3/	
Light underbrush	0.40
Dense underbrush .	0.80
1 The n values are a composite of information compiled by Engman (1986).	
2 Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.	
3 When selecting n, consider cover to a height of about 0.1 ft . This is the only part of the plant cover that will obstruct sheet flow.	
Post-Development, landfill final cover Grass: Short grass prairie $\mathrm{n}=0.15$ Post-Development, landfill final cover.	

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_{t} :

$$
\begin{equation*}
\mathrm{T}_{\mathrm{t}}=\frac{0.007(\mathrm{~nL})^{0.8}}{\left(\mathrm{P}_{2}\right)^{0.5} \mathrm{~s}^{0.4}} \tag{eq.3-3}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}}= & \text { travel time }(\mathrm{hr}), \\
\mathrm{n} & =\text { Manning's roughness coefficient (table 3-1) } \\
\mathrm{L} & =\text { flow length (ft) } \\
\mathrm{P}_{2}= & \text { 2-year, 24-hour rainfall (in) } \\
\mathrm{S}= & \text { slope of hydraulic grade line } \\
& \text { (land slope, } \mathrm{ft} / \mathrm{ft} \text {) }
\end{aligned}
$$

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 $\mathrm{ft} / \mathrm{ft}$, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation.

APPENDIX 6A-B

HEC-HMS PRE-DEVELOPMENT INPUT/OUTPUT FILES

SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6A-B-1 to 6A-B-61

BLOSSOM PRAIRIE LANDFILL
HEC-HMS INPUT SCHEMATIC PRE-DEVELOPMENT CONDITIONS

PRE-DEVELOPMENT INPUT FILES

```
Basin: PRE-DEVELOPMENT
    Description: WACO LANDFILL
    Last Modified Date: 7 April 2020
    Last Modified Time: 03:22:44
    Version: 4.0
    Filepath Separator: \
    Unit System: English
    Missing Flow To Zero: No
    Enable Flow Ratio: No
    Compute Local Flow At Junctions: No
    Enable Sediment Routing: No
    Enable Quality Routing: No
End:
Subbasin: OS-1
    Canvas X: -6043.995437291279
    Canvas Y: -844.4490044262448
    Label X: -25.0
    Label Y: -19.0
    Area: 1.58
    Downstream: PRE-8A HC
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 79.7
    Transform: SCS
    Lag: 69
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Reach: PRE-8A HC
    Canvas X: -4112.935085015774
    Canvas Y: -816.6639633863088
    From Canvas X: -5828.634848187532
    From Canvas Y: -829.6210936695293
    Label X: -45.0
    Label Y: 11.0
    Downstream: Junction-1
    Route: Muskingum Cunge
```

```
    Channel: Trapezoid
    Length: 3400
    Energy Slope: 0.001
    Width: 33
    Side Slope: 2.33
    Mannings n: 0.03
    Use Variable Time Step: No
    Channel Loss: None
End:
Subbasin: PRE-8A
    Canvas X: -4112.935085015774
    Canvas Y: 280.8451576911357
    Label X: -33.0
    Label Y: 13.0
    Area: 0.0873
    Downstream: Junction-1
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 73.8
    Transform: SCS
    Lag: 35
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Subbasin: OS-2
    Canvas X: -5388.486632319504
    Canvas Y: -1278.7112608447533
    Label X: -29.0
    Label Y: -21.0
    Area: 0.058
    Downstream: Junction-1
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 80
```

```
    Transform: SCS
    Lag: 28
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Subbasin: PRE-8B
    Canvas X: -4112.935085015774
    Canvas Y: -1497.397468864724
    Label X: -36.0
    Label Y: -20.0
    Area: 0.0510
    Downstream: Junction-1
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 77.4
    Transform: SCS
    Lag: 39
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: Junction-1
    Canvas X: -4112.935085015774
    Canvas Y: -816.6639633863088
    Label X: -3.0
    Label Y: 21.0
    Downstream: PRE-8C HC
End:
```

```
Reach: PRE-8C HC
```

Reach: PRE-8C HC
Canvas X: -975.2120183559127
Canvas X: -975.2120183559127
Canvas Y: -823.8327427273098
Canvas Y: -823.8327427273098
From Canvas X: -4112.935085015774
From Canvas X: -4112.935085015774
From Canvas Y: -816.6639633863088
From Canvas Y: -816.6639633863088
Label X: -35.0
Label X: -35.0
Label Y: -14.0
Label Y: -14.0
Downstream: POD-8
Downstream: POD-8
Route: Muskingum Cunge

```
    Route: Muskingum Cunge
```

```
    Channel: Trapezoid
    Length: 8902
    Energy Slope: 0.001
    Width: 28.8
    Side Slope: 2.33
    Mannings n: 0.03
    Use Variable Time Step: No
    Channel Loss: None
End:
Subbasin: PRE-8C
    Canvas X: -2006.566227205818
    Canvas Y: -369.4213406019235
    Label X: -38.0
    Label Y: -21.0
    Area: 0.3085
    Downstream: POD-8
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 73.1
    Transform: SCS
    Lag: 60
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Subbasin: PRE-8D
    Canvas X: -1958.708862982512
    Canvas Y: -2028.4766336765624
    Label X: -36.0
    Label Y: -22.0
    Area: 0.0770
    Downstream: Junction-2
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 74.8
```

```
    Transform: SCS
    Lag: 34
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: Junction-2
    Canvas X: -1990.613772464716
    Canvas Y: -1502.0456272201864
    Label X: -86.0
    Label Y: -5.0
    Downstream: Junction-3
End:
Subbasin: OS-3
    Canvas X: -953.7042142930677
    Canvas Y: -2028.4766336765624
    Label X: -28.0
    Label Y: -23.0
    Area: 0.024
    Downstream: Junction-3
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 80
    Transform: SCS
    Lag: 29
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: Junction-3
    Canvas X: -953.7042142930677
    Canvas Y: -1502.0456272201864
    Label X: 2.0
    Label Y: -1.0
    Downstream: OS-3 REACH
End:
Reach: OS-3 REACH
    Canvas X: -975.2120183559127
```

```
    Canvas Y: -823.8327427273098
    From Canvas X: -953.7042142930677
    From Canvas Y: -1502.0456272201864
    Label X: -8.0
    Label Y: -1.0
    Downstream: POD-8
    Route: Muskingum Cunge
    Channel: Trapezoid
    Length: 2039
    Energy Slope: 0.0030
    Width: 5
    Side Slope: 10
    Mannings n: 0.03
    Use Variable Time Step: No
    Channel Loss: None
End:
Junction: POD-8
    Canvas X: -975.2120183559127
    Canvas Y: -823.8327427273098
    Label X: 3.0
    Label Y: 8.0
    Downstream: Site-19 Reservoir
End:
Subbasin: PRE-1
    Canvas X: - 2245.853048322353
    Canvas Y: 4623.6969933630935
    Label X: -31.0
    Label Y: -20.0
    Area: 0.1022
    Downstream: POD-1
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 75.3
    Transform: SCS
    Lag: 39
    Unitgraph Type: STANDARD
    Baseflow: None
End:
```

```
Subbasin: OS-5
    Canvas X: -2341.5677767689667
    Canvas Y: 5357.509911453799
    Label X: -57.0
    Label Y: -4.0
    Area: 0.013
    Downstream: PRE-1 PW
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 80
    Transform: SCS
    Lag: 48
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Reach: PRE-1 PW
    Canvas X: -810.1321216231463
    Canvas Y: 4623.6969933630935
    From Canvas X: -801.5243995527253
    From Canvas Y: 5361.832736262741
    Label X: -3.0
    Label Y: 1.0
    Downstream: POD-1
    Route: Muskingum Cunge
    Channel: Trapezoid
    Length: 2364
    Energy Slope: 0.011
    Width: 38.9
    Side Slope: 4.44
    Mannings n: 0.03
    Use Variable Time Step: No
    Channel Loss: None
End:
Junction: POD-1
    Canvas X: -810.1321216231463
    Canvas Y: 4623.6969933630935
    Label X: -33.0
    Label Y: -20.0
    Downstream: Site 19 - North Reservoir
```

End:
Subbasin: PRE-2
Canvas X: -2213.948138840149
Canvas Y: 3953.693894236797
Label X: -31.0
Label Y: -20.0
Area: 0.0248
Downstream: POD-2
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 29
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-2
Canvas X: -810.1321216231463
Canvas Y: 3953.693894236797
Label X: -33.0
Label Y: -20.0
Downstream: Site 19 - North Reservoir
End:
Subbasin: PRE-3
Canvas X: -2150.1383198757394
Canvas Y: 3331.5481593338072
Label X: -31.0
Label Y: -21.0
Area: 0.0235
Downstream: POD-3
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73

```
    Transform: SCS
    Lag: 31
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: POD-3
    Canvas X: -842.0370311053521
    Canvas Y: 3331.5481593338072
    Label X: -31.0
    Label Y: -26.0
    Downstream: Site 19 - North Reservoir
End:
Subbasin: PRE-4
    Canvas X: -2118.2334103935355
    Canvas Y: 2533.925422278693
    Label X: -34.0
    Label Y: -22.0
    Area: 0.0056
    Downstream: POD-4
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 73
    Transform: SCS
    Lag: 13
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: POD-4
    Canvas X: -905.84685006976
    Canvas Y: 2533.925422278693
    Label X: -28.0
    Label Y: -23.0
    Downstream: Site 19 - North Reservoir
End:
Reservoir: Site 19 - North Reservoir
    Canvas X: 2444.16864556172
```

```
    Canvas Y: 3331.5481593338072
    Downstream: Site-19 Reservoir
    Route: Modified Puls
    Routing Curve: Elevation-Area-Outflow
    Initial Elevation: 520.69
    Elevation-Area Table: Site 19 Reservoir
    Elevation-Outflow Table: Site 19 Reservoir
    Primary Table: Elevation-Outflow
End:
Subbasin: PRE-5
    Canvas X: -2022.51868194692
    Canvas Y: 1784.1600494468858
    Label X: -29.0
    Label Y: -22.0
    Area: 0.0422
    Downstream: POD-5
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 73
    Transform: SCS
    Lag: 39
    Unitgraph Type: STANDARD
    Baseflow: None
End:
Junction: POD-5
    Canvas X: -857.989485846454
    Canvas Y: 1768.2075947057829
    Label X: -36.0
    Label Y: -20.0
    Downstream: Site-19 Reservoir
End:
Subbasin: PRE-7
    Canvas X: -1974.661317723614
    Canvas Y: 268.6768490421682
    Label X: -30.0
    Label Y: -19.0
    Area: 0.0233
    Downstream: POD-7
```

```
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 31
Unitgraph Type: STANDARD
Baseflow: None
End:
```

```
Junction: POD-7
```

Junction: POD-7
Canvas X: -937.7517595519657
Canvas Y: 268.6768490421682
Label X: -28.0
Label Y: -21.0
Downstream: Site-19 Reservoir
End:
Subbasin: PRE-6
Canvas X: -2038.4711366880238
Canvas Y: 1002.4897671328736
Label X: -28.0
Label Y: -25.0
Area: 0.0043
Downstream: POD-6
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 26
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-6

```
```

 Canvas X: -905.84685006976
 Canvas Y: 1002.4897671328736
 Label X: -37.0
 Label Y: -21.0
 Downstream: Site-19 Reservoir
 End:
Subbasin: PRE-9
Canvas X: -1958.708862982512
Canvas Y: -2762.289551767266
Label X: -32.0
Label Y: -22.0
Area: 0.0029
Downstream: POD-9
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 33
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-9
Canvas X: -953.7042142930677
Canvas Y: -2762.289551767266
Label X: -31.0
Label Y: -20.0
Downstream: Site-19 Reservoir
End:
Reservoir: Site-19 Reservoir
Canvas X: 2444.16864556172
Canvas Y: -832.0425280938907
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 520.69
Elevation-Area Table: Site 19 Reservoir
Elevation-Outflow Table: Site 19 Reservoir
Primary Table: Elevation-Outflow
End:

```
```

Subbasin: PRE-10B
Canvas X: -1087.7731701331886
Canvas Y: -3352.8371223919185
Label X: 0.0
Label Y: -2.0
Area: 0.0135
Downstream: POD-10
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 79.6
Transform: SCS
Lag: 35
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: PRE-10A
Canvas X: -3113.2071036119805
Canvas Y: -3559.7739436369993
Area: 0.0085
Downstream: PRE-10 TK Parkway
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 10
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: PRE-10 TK Parkway
Canvas X: -1087.7731701331886
Canvas Y: -3871.134268525755

```
```

 From Canvas X: - 3083.0660183803902
 From Canvas Y: -3877.2254122533195
 Label X: -70.0
 Label Y: -18.0
 Downstream: POD-10
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 1215.664
 Energy Slope: 0.008
 Width: 17.8
 Side Slope: 0.12
 Mannings n: 0.033
 Use Variable Time Step: No
 Channel Loss: None
 End:
Junction: POD-10
Canvas X: -1087.7731701331886
Canvas Y: -3871.134268525755
End:
Subbasin: PRE-11
Canvas X: -5990.584011939755
Canvas Y: -3394.861215321689
Area: 0.0104
Downstream: POD-11
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80.0
Transform: SCS
Lag: 19
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-11
Canvas X: -5990.584011939755
Canvas Y: - 3913.1583614555257
Label X: -72.0
Label Y: -3.0
End:

```

Basin Schematic Properties:
Last View N: 5000.0
Last View S: -5000.0
Last View W: -5000.0
Last View E: 5000.0
Maximum View N: 5880.5970149253735
Maximum View S: -3971.33220910624
Maximum View W: -6264.755480607084
Maximum View E: 4915.682967959527
Extent Method: Elements
Buffer: 0
Draw Icons: Yes
Draw Icon Labels: Name
Draw Map Objects: No
Draw Gridlines: No
Draw Flow Direction: No
Fix Element Locations: No
Fix Hydrologic Order: No
End:

\section*{PRE-DEVELOPMENT OUTPUT FILES}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume (AC-FT) \\
\hline OS-1 & 1.58 & 1709.8 & 02Oct2018, 13:10 & 463.2 \\
\hline PRE-8A HC & 1.58 & 1677.8 & 02Oct2018, 13:20 & 462.5 \\
\hline PRE-8A & 0.0873 & 123.7 & 02Oct2018, 12:40 & 22.4 \\
\hline OS-2 & 0.058 & 104.2 & 02Oct2018, 12:30 & 17.1 \\
\hline PRE-8B & 0.0510 & 73.6 & 02Oct2018, 12:40 & 14.2 \\
\hline Junction-1 & 1.7763 & 1820.9 & 02Oct2018, 13:20 & 516.3 \\
\hline PRE-8C HC & 1.7763 & 1729.7 & 02Oct2018, 13:40 & 514.5 \\
\hline PRE-8C & 0.3085 & 314.9 & 02Oct2018, 13:10 & 77.9 \\
\hline PRE-8D & 0.0770 & 113.1 & 02Oct2018, 12:40 & 20.2 \\
\hline Junction-2 & 0.0770 & 113.1 & 02Oct2018, 12:40 & 20.2 \\
\hline OS-3 & 0.024 & 42.3 & 02Oct2018, 12:30 & 7.1 \\
\hline Junction-3 & 0.1010 & 153.7 & 02Oct2018, 12:40 & 27.3 \\
\hline OS-3 REACH & 0.1010 & 150.6 & 02Oct2018, 12:50 & 27.4 \\
\hline POD-8 & 2.1858 & 2030.2 & 02Oct2018, 13:40 & 619.7 \\
\hline PRE-1 & 0.1022 & 140.7 & 02Oct2018, 12:40 & 27.2 \\
\hline OS-5 & 0.013 & 17.7 & 02Oct2018, 12:50 & 3.8 \\
\hline PRE-1 PW & 0.013 & 17.4 & 02Oct2018, 13:10 & 3.8 \\
\hline POD-1 & 0.1152 & 153.9 & 02Oct2018, 12:50 & 31.0 \\
\hline PRE-2 & 0.0248 & 37.5 & 02Oct2018, 12:30 & 6.2 \\
\hline POD-2 & 0.0248 & 37.5 & 02Oct2018, 12:30 & 6.2 \\
\hline PRE-3 & 0.0235 & 34.2 & 02Oct2018, 12:40 & 5.9 \\
\hline POD-3 & 0.0235 & 34.2 & 02Oct2018, 12:40 & 5.9 \\
\hline PRE-4 & 0.0056 & 11.2 & 02Oct2018, 12:20 & 1.4 \\
\hline POD-4 & 0.0056 & 11.2 & 02Oct2018, 12:20 & 1.4 \\
\hline Site 19 - North Reservoir & 0.1691 & 5.3 & 03Oct2018, 00:30 & 13.9 \\
\hline PRE-5 & 0.0422 & 55.0 & 02Oct2018, 12:40 & 10.6 \\
\hline POD-5 & 0.0422 & 55.0 & 02Oct2018, 12:40 & 10.6 \\
\hline PRE-7 & 0.0233 & 33.9 & 02Oct2018, 12:40 & 5.9 \\
\hline POD-7 & 0.0233 & 33.9 & 02Oct2018, 12:40 & 5.9 \\
\hline PRE-6 & 0.0043 & 6.9 & 02Oct2018, 12:30 & 1.1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Hydrologic \\
Element
\end{tabular} & \begin{tabular}{l} 
Drainage Area \\
\((\mathrm{MI} 2)\)
\end{tabular} & \begin{tabular}{l} 
Peak Discharge \\
(CFS)
\end{tabular} & Time of Peak & \begin{tabular}{l} 
Volume \\
\((\) AC-FT \()\)
\end{tabular} \\
\hline POD-6 & 0.0043 & 6.9 & O2Oct2018, 12:30 & 1.1 \\
\hline PRE-9 & 0.0029 & 4.1 & O2Oct2018, 12:40 & 0.7 \\
\hline POD-9 & 0.0029 & 4.1 & 02Oct2018, 12:40 & 0.7 \\
\hline Site-19 Reservoir & 2.4276 & 63.5 & 03Oct2018, 01:50 & 168.6 \\
\hline PRE-10B & 0.0135 & 21.6 & O2Oct2018, 12:40 & 3.9 \\
\hline PRE-10A & 0.0085 & 21.2 & 02Oct2018, 12:10 & 2.5 \\
\hline PRE-10 TK Parkway & 0.0085 & 20.0 & O2Oct2018, 12:20 & 2.5 \\
\hline POD-10 & 0.0220 & 36.9 & O2Oct2018, 12:30 & 6.5 \\
\hline PRE-11 & 0.0104 & 21.9 & O2Oct2018, 12:20 & 3.1 \\
\hline POD-11 & 0.0104 & 21.9 & O2Oct2018, 12:20 & 3.1 \\
\hline
\end{tabular}

\section*{Page 2}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Subbasin: PRE-1
\begin{tabular}{llll} 
Start of Run: & O2Oct2018,00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 140.7 (CFS) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018}, 12: 40\) \\
Precipitation Volume: & \(43.1(\) AC-FT \()\) & Direct Runoff Volume: & \(27.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(15.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(27.2(\) AC-FT \()\) & Discharge Volume: & 27.2 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(37.5(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(10.4(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(6.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(4.2(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(6.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(6.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(34.2(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018,12:40}\) \\
Precipitation Volume: & \(9.9(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(4.0(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-4
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(11.2(\) CFS \()\) & Date/Time of Peak Discharge: & \(02 O c t 2018,12: 20\) \\
Precipitation Volume: & \(2.4(\) AC-FT \()\) & Direct Runoff Volume: & \(1.4(\) AC-FT \()\) \\
Loss Volume: & \(0.9(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.4(\) AC-FT \()\) & Discharge Volume: & \(1.4(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-5
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(55.0(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018}, 12: 40\) \\
Precipitation Volume: & \(17.8(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(10.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(7.2(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(10.6(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(10.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Subbasin: PRE-6
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(6.9(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(1.8(\) AC-FT \()\) & Direct Runoff Volume: & 1.1 (AC-FT) \\
Loss Volume: & \(0.7(\) AC-FT \()\) & Baseflow Volume: & \(0.0(A C-F T)\) \\
Excess Volume: & \(1.1(\) AC-FT \()\) & Discharge Volume: & 1.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-7
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(33.9(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018,12:40}\) \\
Precipitation Volume: & \(9.8(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(5.9(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-8A
\begin{tabular}{llll} 
Start of Run: & O2Oct2018,00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 123.7 (CFS) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018}, 12: 40\) \\
Precipitation Volume: & \(36.8(\) AC-FT \()\) & Direct Runoff Volume: & 22.4 (AC-FT) \\
Loss Volume: & \(14.4(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(22.4(\) AC-FT \()\) & Discharge Volume: & 22.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-8B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(73.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Cct2018}, 12: 40\) \\
Precipitation Volume: & \(21.5(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(14.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(7.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(14.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(14.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-8C
\begin{tabular}{llll} 
Start of Run: & O2Oct2018,00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 314.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:10 \\
Precipitation Volume: & \(130.0(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 77.9 (AC-FT) \\
Loss Volume: & \(52.1(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(77.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & 77.9 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-8D
\begin{tabular}{llll} 
Start of Run: & O2Oct2018,00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 113.1 (CFS) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018}, 12: 40\) \\
Precipitation Volume: & \(32.4(\) AC-FT \()\) & Direct Runoff Volume: & \(20.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(12.2(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(20.2(\) AC-FT \()\) & Discharge Volume: & 20.2 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-9
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: IN

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(4.1(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Precipitation Volume: & \(7.90(\mathrm{IN})\) & Direct Runoff Volume: & \(4.72(\mathrm{IN})\) \\
Loss Volume: & \(3.18(\mathrm{IN})\) & Baseflow Volume: & \(0.00(\mathrm{IN})\) \\
Excess Volume: & \(4.72(\mathrm{IN})\) & Discharge Volume: & \(4.72(\mathrm{IN})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-10A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & \begin{tabular}{l} 
25-year, 24-hour \\
Compute Time:
\end{tabular} \\
& 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& Volume Units: IN &
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(21.2(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(7.90(\mathrm{IN})\) & Direct Runoff Volume: & \(5.53(\mathrm{IN})\) \\
Loss Volume: & \(2.37(\mathrm{IN})\) & Baseflow Volume: & \(0.00(\mathrm{IN})\) \\
Excess Volume: & \(5.53(\mathrm{IN})\) & Discharge Volume: & \(5.53(\mathrm{IN})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr, 24 hr (pre)
Subbasin: PRE-10B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: IN

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(21.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Precipitation Volume: & \(7.90(\mathrm{IN})\) & Direct Runoff Volume: & \(5.48(\mathrm{IN})\) \\
Loss Volume: & \(2.42(\mathrm{IN})\) & Baseflow Volume: & \(0.00(\mathrm{IN})\) \\
Excess Volume: & \(5.48(\mathrm{IN})\) & Discharge Volume: & \(5.48(\mathrm{IN})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: PRE-11
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & \begin{tabular}{l} 
25-year, 24-hour \\
Compute Time:
\end{tabular} \\
& 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& Volume Units: & IN &
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(21.9(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Precipitation Volume: & \(7.90(\mathrm{IN})\) & Direct Runoff Volume: & \(5.53(\mathrm{IN})\) \\
Loss Volume: & \(2.37(\mathrm{IN})\) & Baseflow Volume: & \(0.00(\mathrm{IN})\) \\
Excess Volume: & \(5.53(\mathrm{IN})\) & Discharge Volume: & \(5.53(\mathrm{IN})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: OS-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 1709.8 (CFS) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018,13:10}\) \\
Precipitation Volume: & \(665.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 463.2 (AC-FT) \\
Loss Volume: & \(202.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(463.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & 463.2 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: OS-2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 104.2 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(24.4(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 17.1 (AC-FT) \\
Loss Volume: & \(7.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & 17.1 (AC-FT) & Discharge Volume: & 17.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: OS-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(42.3(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(10.1(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(7.1(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(3.0(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(7.1(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(7.1(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Subbasin: OS-5
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(17.7(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018}, 12: 50\) \\
Precipitation Volume: & \(5.5(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(3.8(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(3.8(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(3.8(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Junction: Junction-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & \begin{tabular}{l} 
25-year, 24-hour \\
Compute Time:
\end{tabular} \\
& 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& Volume Units: & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 1820.9 (CFS) Date/Time of Peak Discharge: \(\quad\) O2Oct2018, 13:20

Volume: 516.3 (AC-FT)

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Junction: Junction-2
Start of Run: 02Oct2018,00:00 Basin Model:
End of Run: 04Oct2018,00:00
Compute Time: 06Apr2020, 22:23:59

Meteorologic Model:
Control Specifications: 48-hour

Volume Units: AC-FT

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 113.1 (CFS) \(\quad\) Date/Time of Peak Discharge: & O2Oct2018, 12:40 \\
Volume: & \(20.2(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Junction: Junction-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 153.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Volume: & \(27.3(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Reach: PRE-1 PW
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 17.7 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:50 \\
Peak Discharge: & 17.4 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:10 \\
Inflow Volume: & 3.8 (AC-FT) & Discharge Volume: & 3.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Reach: PRE-8A HC
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 1709.8 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 13:10 \\
\hline Peak Discharge: & 1677.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:20 \\
\hline Inflow Volume: & 463.2 (AC-FT) & Discharge Volume: & 462.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Reach: PRE-8C HC
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 1820.9 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 13:20 \\
\hline Peak Discharge: & 1729.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:40 \\
\hline Inflow Volume: & 516.3 (AC-FT) & Discharge Volume: & 514.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill \(\quad\) Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)
Reach: PRE-10 TK Parkway
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 21.2 (CFS) D & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 20.0 (CFS) D & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
\hline Inflow Volume: & 2.5 (AC-FT) D & Discharge Volume: & 2.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Project: City of Waco Landfill} & \multicolumn{2}{|l|}{Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)} \\
\hline \multicolumn{4}{|c|}{Reach: OS-3 REACH} \\
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 153.7 (CFS) D & Date/Time of Peak Inflow & 02Oct2018, 12:40 \\
\hline Peak Discharge: & : 150.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:50 \\
\hline Inflow Volume: & 27.3 (AC-FT) D & Discharge Volume: & 27.4 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Junction: POD-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 153.9 (CFS) Date/Time of Peak Discharge: \(\quad\) O2Oct2018, 12:50
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

\section*{Junction: POD-2}
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 37.5 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:30

Volume: 6.2 (AC-FT)
Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)

Junction: POD-3
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 34.2 (CFS) Date/Time of Peak Discharge: \(\quad\) 02Oct2018, 12:40
Volume: \(\quad 5.9\) (AC-FT)
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

Junction: POD-4
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 11.2 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:20
Volume: \(\quad 1.4\) (AC-FT)
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

Junction: POD-5
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 55.0 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:40

Volume: \(\quad 10.6\) (AC-FT)
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

Junction: POD-6
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 6.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Volume: & \(1.1(\) AC-FT \()\) & &
\end{tabular}
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

\section*{Junction: POD-7}
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 33.9 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:40
Volume: 5.9 (AC-FT)
Project: City of Waco Landfill \(\left.\begin{array}{c}\text { Simulation Run: } 25 \mathrm{yr}, 24 \mathrm{hr} \text { (pre) } \\ \text { Junction: POD-8 }\end{array}\right)\).
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 2030.2 (CFS) & Date/Time of Peak Discharge: & O2Oct2018, 13:40 \\
Volume: & 619.7 (AC-FT) &
\end{tabular}
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

Junction: POD-9
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 4.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Volume: & \(0.7(\) AC-FT \()\) & &
\end{tabular}
Project: City of Waco Landfill \(\quad\) Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre)

Junction: POD-10
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 36.9 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:30
Volume: \(\quad 6.5\) (AC-FT)

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
Junction: POD-11
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 21.9 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:20

Volume:
3.1 (AC-FT)

Project: City of Waco Landfill Simulation Run: 25 yr , 24 hr (pre)
\begin{tabular}{|c|c|c|c|}
\hline Project & City of Waco Landfill & Simulation Run: 25 & \(25 \mathrm{yr}, 24 \mathrm{hr}\) (pre) \\
\hline & Reservoir: & Site 19 - North Reservoir & \\
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & s: 48-hour \\
\hline & Volume Un & its: AC-FT & \\
\hline
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 229.2 (CFS) & Date/Time of Peak Inflow: & 02Oct2018, 12:40 \\
Peak Discharge: & 5.3 (CFS) & Date/Time of Peak Discharge: & 03Oct2018, 00:30 \\
Inflow Volume: & 44.6 (AC-FT) & Peak Storage: & 39.6 (AC-FT) \\
Discharge Volume: & 13.9 (AC-FT) & Peak Elevation: & 520.9 (FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 25 yr, 24 hr (pre)
Reservoir: Site-19 Reservoir
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & PRE-DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 06Apr2020, 22:23:59 & Control Specifications: & 48-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & \(2069.4(\) CFS \()\) & Date/Time of Peak Inflow: & 02Oct2018, 13:40 \\
Peak Discharge: & \(63.5(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 03Oct2018, 01:50 \\
Inflow Volume: & \(651.9(\) AC-FT \()\) & Peak Storage: & \(579.3(\) AC-FT \()\) \\
Discharge Volume: & \(168.6(\) AC-FT \()\) & Peak Elevation: & \(523.1(\mathrm{FT})\)
\end{tabular}

\section*{APPENDX 6A-C}

\section*{HEC-HMS POST-DEVELOPMENT INPUT/OUTPUT FILES}


SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6A-C-1 to 6A-C-141

BLOSSOM PRAIRIE LANDFILL
HEC-HMS INPUT SCHEMATIC POST-DEVELOPMENT CONDITIONS


\title{
HEC-HMS POST-DEVELOPMENT INPUT FILES FOR \\ EDA WEST BASIN, EDA EAST BASIN, \& WDA BASIN / POD-1, POD-2, POD-3, POD-4, POD-5, POD-6, POD-7, POD-8, POD-9, POD-10, \& POD-11
}
```

Basin: POST DEVELOPMENT
Last Modified Date: 8 April 2020
Last Modified Time: 03:21:44
Version: 4.0
Filepath Separator: \
Unit System: English
Missing Flow To Zero: No
Enable Flow Ratio: No
Compute Local Flow At Junctions: No
Enable Sediment Routing: No
Enable Quality Routing: No
End:
Subbasin: OS-1
Canvas X: -150894.52344252676
Canvas Y: -5202.0848120902665
Label X: -24.0
Label Y: -18.0
Area: 1.57999
Downstream: PRE-8A HC
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 79.7
Transform: SCS
Lag: 69
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: PRE-8A HC
Canvas X: -130124.43961737608
Canvas Y: -5202.0848120902665
From Canvas X: -148114.91489719463
From Canvas Y: -5108.832399101095
Label X: -47.0
Label Y: 6.0
Downstream: Junction-1
Route: Muskingum Cunge
Channel: Trapezoid

```
```

 Length: 558
 Energy Slope: 0.0912
 Width: 33
 Side Slope: 0.12
 Mannings n: 0.03
 Use Variable Time Step: No
 Channel Loss: None
 End:
Subbasin: PRE-8ABR
Canvas X: -130124.43961737608
Canvas Y: 7539.2271142626705
Area: 0.0847
Downstream: Junction-1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73.8
Transform: SCS
Lag: 35
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: OS-2
Canvas X: -129872.61508243698
Canvas Y: -16456.2298412394
Label X: -27.0
Label Y: -24.0
Area: 0.058
Downstream: Junction-1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 28

```

Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: Junction-1
Canvas X: -130124.43961737608
Canvas Y: -5202.0848120902665
Label X: -10.0
Label Y: -18.0
Downstream: PRE-8C HC
End:
Reach: PRE-8C HC
Canvas X: 5841.067103568348
Canvas Y: -5202.0848120902665
From Canvas X: -130124.43961737608
From Canvas Y: -5202.0848120902665
Label X: -70.0
Label Y: -21.0
Downstream: POD-8
Route: Muskingum Cunge
Channel: Trapezoid
Length: 10612
Energy Slope: 0.0048
Width: 28.8
Side Slope: 0.21
Mannings n: 0.03
Use Variable Time Step: No
Channel Loss: None
End:
Subbasin: PRE-8CR
Canvas X: 5740.873729981919
Canvas Y: 3575.4795055499417
Label X: -1.0
Label Y: -6.0
Area: 0.1898
Downstream: POD-8
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73.1
```

 Transform: SCS
 Lag: 37
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: DA-3B
Canvas X: -78984.65339242521
Canvas Y: 25691.23314632714
Area: 0.0040
Downstream: DA-3A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 179
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 808
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-3A
Canvas X: -78711.93695564542
Canvas Y: 21065.962378541488
Label X: -2.0
Label Y: -1.0
Area: 0.0373
Downstream: CHAN-2A5

```

Canopy 1: None
Plant Uptake Method: None

Surface 1: None

LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85

Transform: Kinematic Wave

Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5

Channel: 2
Collector Length: 779
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00363
Collector Number of Steps: 5

Channel: Main
Channel Length: 634
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes

Baseflow: None
End:

Subbasin: DA-2B
Canvas X: -81602.73118551144
Canvas Y: 45065.00881516517
Label X: -32.0
Label Y: -19.0
Area: 0.0030
Downstream: DA-2A

Canopy 1: None
Plant Uptake Method: None
```

 Surface 1: None
 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 117
 Plane 1 Slope: 0.05
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: Main
 Channel Length: 496
 Channel Slope: 0.01
 Channel Mannings N: 0.027
 Shape: Triangle
 Channel Side Slope: 3
 Channel Number of Steps: 5
 Baseflow: None
 End:
Subbasin: DA-2A
Canvas X: -81351.83206367402
Canvas Y: 50824.779959954874
Label X: -33.0
Label Y: 13.0
Area: 0.0282
Downstream: CHAN-2A1
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15

```
```

 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 757
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00342
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 950
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Reach: CHAN-2A1
Canvas X: -93794.06375591485
Canvas Y: 38453.34497887773
From Canvas X: -93884.94450762353
From Canvas Y: 50604.63980581959
Label X: -76.0
Label Y: -1.0
Downstream: CHAN-2A2
Route: Muskingum Cunge
Channel: Trapezoid
Length: 223
Energy Slope: 0.0225
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-2A2
Canvas X: -93774.9276375098
Canvas Y: 28958.301758432593
From Canvas X: -93794.06375591485
From Canvas Y: 38453.34497887773

```

Label X: -74.0
Label Y: 2.0
Downstream: CHAN-2A3

Route: Muskingum Cunge
Channel: Trapezoid
Length: 818
Energy Slope: 0.0075
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
```

Reach: CHAN-2A3
Canvas X: -93911.69029629939
Canvas Y: 15038.91265134334
From Canvas X: -93774.9276375098
From Canvas Y: 28958.301758432593
Label X: -76.0
Label Y: -7.0
Downstream: CHAN-2A4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 762
Energy Slope: 0.0225
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-2A4
Canvas X: -79087.93352393302
Canvas Y: 15109.185256967845
From Canvas X: -93911.69029629939
From Canvas Y: 15038.91265134334
Label X: -48.0
Label Y: -11.0
Downstream: CHAN-2A5
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1029
Energy Slope: 0.0025
Width: 10
Side Slope: 3

```

Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

Reach: CHAN-2A5
Canvas X: -42598.784300469284
Canvas Y: 15180.899256403536
From Canvas X: -79087.93352393302
From Canvas Y: 15109.185256967845
Label X: -62.0
Label Y: -11.0
Downstream: EDA WEST BASIN

Route: Muskingum Cunge
Channel: Trapezoid
Length: 852
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

Subbasin: DA-3D
Canvas X: -54200.18361787565
Canvas Y: 25865.771665866218
Label X: -38.0
Label Y: 11.0
Area: 0.0040
Downstream: DA-3C

Canopy 1: None
Plant Uptake Method: None

Surface 1: None

LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85

Transform: Kinematic Wave

Plane: 1
Plane 1 Length: 161
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 822
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-3C
Canvas X: -54025.645098336565
Canvas Y: 21153.231638311023
Label X: -38.0
Label Y: -19.0
Area: 0.0421
Downstream: EDA WEST BASIN
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2
Collector Length: 903
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00429
Collector Number of Steps: 5
Channel: Main
Channel Length: 568
Channel Slope: 0.25
```

 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-3F
Canvas X: -18441.453268080426
Canvas Y: 24146.990494238868
Label X: -56.0
Label Y: -3.0
Area: 0.0027
Downstream: DA-3E
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 181
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 866
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-3E
Canvas X: -17974.119327917317
Canvas Y: 19579.462550758006

```
```

 Label X: -59.0
 Label Y: -5.0
 Area: 0.0339
 Downstream: CHAN-3A1
 Canopy 1: None
 Plant Uptake Method: None
 Surface 1: None
 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 130
 Plane 1 Slope: 0.25
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 807
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00402
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 693
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Reach: CHAN-3A1
Canvas X: -42598.784300469284
Canvas Y: 15180.899256403536
From Canvas X: -17996.21916407974
From Canvas Y: 15142.540755769209

```
```

 Label X: -36.0
 Label Y: -13.0
 Downstream: EDA WEST BASIN
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 2037
 Energy Slope: 0.0025
 Width: 10
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Subbasin: EDA WEST
Canvas X: -42598.784300469284
Canvas Y: 26208.023808937538
Label X: -46.0
Label Y: 15.0
Area: 0.011
Downstream: EDA WEST BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: }9
Transform: SCS
Lag: 1
Unitgraph Type: STANDARD
Baseflow: None
End:
Reservoir: EDA WEST BASIN
Canvas X: -42598.784300469284
Canvas Y: 15180.899256403536
From Canvas X: -25843.4367849071
From Canvas Y: 10575.944546616312
Label X: -78.0
Label Y: -19.0
Downstream: POD-8
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow

```
```

 Initial Elevation: 530
 Elevation-Area Table: EDA WEST BASIN
 Elevation-Outflow Table: EDA WEST BASIN
 Primary Table: Elevation-Outflow
 End:
Subbasin: DA-5B
Canvas X: -48245.013980368705
Canvas Y: -52566.31666460971
Area: 0.0036
Downstream: DA-5A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 176
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 554
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-5A
Canvas X: -48068.6615501185
Canvas Y: -57504.18471161605
Label X: 5.0
Label Y: 1.0
Area: 0.0379
Downstream: CHAN-4B7
Canopy 1: None

```

Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2
Collector Length: 1038
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00484
Collector Number of Steps: 5
Channel: Main
Channel Length: 844
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:
Subbasin: DA-5D
Canvas X: -83031.76531423768
Canvas Y: -51891.13878879456
Label X: -29.0
Label Y: -19.0
Area: 0.0048
Downstream: DA-5C
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1Plane 1 Length: 242
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 491
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-5C
Canvas X: -95271.27899691576
Canvas Y: -50931.17693132961
Label X: -30.0
Label Y: -19.0
Area: 0.0099
Downstream: CHAN-4B3
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
```

 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 427
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00199
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 370
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-5E
Canvas X: -95507.46528742944
Canvas Y: -32814.84447658433
Label X: -35.0
Label Y: -20.0
Area: 0.0033
Downstream: CHAN-4B1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 7
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-4B1
Canvas X: -99918.46890222236

```
```

 Canvas Y: -43191.250020324485
 From Canvas X: -100018.86951473463
 From Canvas Y: -32978.82169526743
 Label X: -78.0
 Label Y: -2.0
 Downstream: CHAN-4B2
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 448
 Energy Slope: 0.006
 Width: 5
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4B2
Canvas X: -99985.96232959302
Canvas Y: -52140.32237768591
From Canvas X: -99918.46890222236
From Canvas Y: -43191.250020324485
Label X: -85.0
Label Y: -6.0
Downstream: CHAN-4B3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 104
Energy Slope: 0.0190
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B3
Canvas X: -99946.73749156627
Canvas Y: -61737.672879597725
From Canvas X: -99985.96232959302
From Canvas Y: -52140.32237768591
Label X: -81.0
Label Y: -7.0
Downstream: CHAN-4B4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 714

```
```

 Energy Slope: 0.007
 Width: 10
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4B4
Canvas X: -90099.30028619742
Canvas Y: -61766.4197427996
From Canvas X: -99946.73749156627
From Canvas Y: -61737.672879597725
Label X: -48.0
Label Y: -11.0
Downstream: CHAN-4B5
Route: Muskingum Cunge
Channel: Trapezoid
Length: 341
Energy Slope: 0.01
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B5
Canvas X: -65530.197431344655
Canvas Y: -61720.77131889899
From Canvas X: -90099.30028619742
From Canvas Y: -61766.4197427996
Label X: -53.0
Label Y: -12.0
Downstream: CHAN-4B6
Route: Muskingum Cunge
Channel: Trapezoid
Length: 699
Energy Slope: 0.0065
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B6
Canvas X: -50312.959806994026

```
```

 Canvas Y: -61791.14000809468
 From Canvas X: -65530.197431344655
 From Canvas Y: -61720.77131889899
 Label X: -45.0
 Label Y: -14.0
 Downstream: CHAN-4B7
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 495
 Energy Slope: 0.01
 Width: 10
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4B7
Canvas X: -32511.75550095027
Canvas Y: -61742.09825398881
From Canvas X: -50312.959806994026
From Canvas Y: -61791.14000809468
Label X: -45.0
Label Y: -15.0
Downstream: CHAN-4B8
Route: Muskingum Cunge
Channel: Trapezoid
Length: 245
Energy Slope: 0.01
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B8
Canvas X: -32523.194823561003
Canvas Y: -31245.30784735731
From Canvas X: -32511.75550095027
From Canvas Y: -61742.09825398881
Label X: -10.0
Label Y: -10.0
Downstream: WDA BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: }140

```
```

 Energy Slope: 0.0025
 Width: 11
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Subbasin: DA-4B
Canvas X: -53182.882027375046
Canvas Y: -31227.672604332285
Label X: -30.0
Label Y: -21.0
Area: 0.005
Downstream: DA-4A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 236
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 566
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-4A
Canvas X: -44541.61294511394
Canvas Y: -31227.672604332285
Label X: -27.0
Label Y: -23.0

```
```

 Area: 0.0300
 Downstream: WDA BASIN
 Canopy 1: None
 Plant Uptake Method: None
 Surface 1: None
 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 130
 Plane 1 Slope: 0.25
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 804
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00375
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 438
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-4D
Canvas X: -84744.4245372149
Canvas Y: -25448.55307862372
Area: 0.0027
Downstream: DA-4C
Canopy 1: None

```
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 218
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 368
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-4C
Canvas X: -84744.4245372149
Canvas Y: -20561.474531529442
Area: 0.0194
Downstream: CHAN-4A3
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
```

 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 694
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00324
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 387
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-4E
Canvas X: -94802.05556642853
Canvas Y: -27700.623999327756
Label X: -33.0
Label Y: 11.0
Area: 0.0047
Downstream: CHAN-4A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 7
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-4A1
Canvas X: -99612.41688037939

```
```

 Canvas Y: -16947.720817565078
 From Canvas X: -99594.44755383424
 From Canvas Y: -27707.389718607825
 Label X: -73.0
 Label Y: -5.0
 Downstream: CHAN-4A2
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 434
 Energy Slope: 0.0025
 Width: 5
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4A2
Canvas X: -84758.90482867799
Canvas Y: -17039.526632119327
From Canvas X: -99612.41688037939
From Canvas Y: -16947.720817565078
Label X: -47.0
Label Y: 3.0
Downstream: CHAN-4A3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 416
Energy Slope: 0.030
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4A3
Canvas X: -58838.42769660833
Canvas Y: -17017.39364914017
From Canvas X: -84758.90482867799
From Canvas Y: -17039.526632119327
Label X: -47.0
Label Y: 8.0
Downstream: CHAN-4A4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 338

```
```

 Energy Slope: 0.015
 Width: 10
 Side Slope: 3
 Mannings n: 0.033
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4A4
Canvas X: - 32438.239348354735
Canvas Y: -17017.393649140184
From Canvas X: -58838.42769660833
From Canvas Y: -17017.39364914017
Label X: -37.0
Label Y: 8.0
Downstream: CHAN-4A5
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1636
Energy Slope: 0.006
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4A5
Canvas X: -32523.194823561003
Canvas Y: - 31245.30784735731
From Canvas X: -32438.239348354735
From Canvas Y: -17017.393649140184
Label X: -78.0
Label Y: 7.0
Downstream: WDA BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 240
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

```

Subbasin: WDA
Canvas X: -40411.640574288234
```

 Canvas Y: - 39237.09612221115
 Label X: -27.0
 Label Y: -21.0
 Area: 0.010
 Downstream: WDA BASIN
 Canopy: None
 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: }9
 Transform: SCS
 Lag: 1
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Reservoir: WDA BASIN
Canvas X: -32523.194823561003
Canvas Y: -31245.30784735731
Label X: -4.0
Label Y: -11.0
Downstream: POD-8
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 531
Elevation-Area Table: WDA BASIN
Elevation-Outflow Table: WDA BASIN
Primary Table: Elevation-Outflow
End:
Subbasin: PRE-8DR
Canvas X: -11572.526109834085
Canvas Y: -67521.00274982891
From Canvas X: -2451.2800345420183
From Canvas Y: -51837.25099194079
Label X: -34.0
Label Y: -19.0
Area: 0.0312
Downstream: Junction-2
Canopy: None
Plant Uptake Method: None

```
```

 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 73.7
 Transform: SCS
 Lag: 35
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: Junction-2
Canvas X: -11563.708488321572
Canvas Y: -62794.75761912284
From Canvas X: -2451.2800345420183
From Canvas Y: -51837.25099194079
Label X: -48.0
Label Y: 16.0
Downstream: Junction-3
End:
Subbasin: OS-3
Canvas X: 5666.528584029264
Canvas Y: -67163.25924846418
From Canvas X: -2451.2800345420183
From Canvas Y: -51837.25099194079
Label X: -29.0
Label Y: -16.0
Area: 0.02334
Downstream: Junction-3
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 29
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: Junction-3

```
```

 Canvas X: 5841.067103568348
 Canvas Y: -62799.79625998715
 From Canvas X: -2451.2800345420183
 From Canvas Y: -51837.25099194079
 Label X: 2.0
 Label Y: -1.0
 Downstream: OS-3 REACH
 End:
Reach: OS-3 REACH
Canvas X: 5841.067103568348
Canvas Y: -5202.0848120902665
From Canvas X: 5841.067103568348
From Canvas Y: -62799.79625998715
Label X: -91.0
Label Y: -18.0
Downstream: POD-8
Route: Muskingum Cunge
Channel: Trapezoid
Length: 2039
Energy Slope: 0.0030
Width: 5
Side Slope: 10
Mannings n: 0.03
Use Variable Time Step: No
Channel Loss: None
End:
Junction: POD-8
Canvas X: 5841.067103568348
Canvas Y: -5202.0848120902665
Label X: -1.0
Label Y: -5.0
Downstream: Site-19 Reservoir
End:
Subbasin: DA-1B
Canvas X: -63587.67541213843
Canvas Y: 52187.0269040249
Label X: -3.0
Label Y: -3.0
Area: 0.0055
Downstream: DA-1A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None

```
```

 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 189
 Plane 1 Slope: 0.05
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: Main
 Channel Length: 906
 Channel Slope: 0.01
 Channel Mannings N: 0.027
 Shape: Triangle
 Channel Side Slope: 3
 Channel Number of Steps: 5
 Baseflow: None
 End:
Subbasin: DA-1A
Canvas X: -63587.67541213843
Canvas Y: 57301.24738128147
Label X: -3.0
Label Y: -5.0
Area: 0.0355
Downstream: CHAN-1A3
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5

```

Channel: 2
Collector Length: 847
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00395
Collector Number of Steps: 5
Channel: Main
Channel Length: 536
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:

Subbasin: DA-1C
Canvas X: -94518.58163140346
Canvas Y: 56060.93554612731
Label X: -33.0
Label Y: -17.0
Area: 0.0042
Downstream: CHAN-1A1
Canopy: None
Plant Uptake Method: None
Surface: None

LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 11
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-1A1
Canvas X: -77549.52569158612
Canvas Y: 59683.305800276365
From Canvas X: -94492.294979086
```

 From Canvas Y: 59688.335798792956
 Label X: -43.0
 Label Y: 7.0
 Downstream: CHAN-1A2
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 404
 Energy Slope: 0.01
 Width: 5
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-1A2
Canvas X: -63474.03227483758
Canvas Y: 59755.354935152754
From Canvas X: -77549.52569158612
From Canvas Y: 59683.305800276365
Label X: -48.0
Label Y: 6.0
Downstream: CHAN-1A3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1274
Energy Slope: 0.008
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-1A3
Canvas X: -50544.58613689869
Canvas Y: 59702.141025402394
From Canvas X: -63474.03227483758
From Canvas Y: 59755.354935152754
Label X: -44.0
Label Y: 5.0
Downstream: CHAN-1A4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 348
Energy Slope: 0.0025
Width: 10

```

Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-1A4
Canvas X: -25848.255338589923
Canvas Y: 59770.18140478464
From Canvas X: -50544.58613689869
From Canvas Y: 59702.141025402394
Label X: -34.0
Label Y: 5.0
Downstream: EDA EAST BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 711
Energy Slope: 0.022
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Subbasin: EDA EAST
Canvas X: -25848.255338589923
Canvas Y: 65942.51646354258
Label X: -42.0
Label Y: 16.0
Area: 0.003
Downstream: EDA EAST BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 99
Transform: SCS
Lag: 1
Unitgraph Type: STANDARD
Baseflow: None
End:
```

Subbasin: DA-1D
Canvas X: -25848.255338589923
Canvas Y: 52539.73176452535
Label X: -28.0
Label Y: -17.0
Area: 0.0023
Downstream: EDA EAST BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 9
Unitgraph Type: STANDARD
Baseflow: None
End:
Reservoir: EDA EAST BASIN
Canvas X: -25848.255338589923
Canvas Y: 59770.18140478464
From Canvas X: -43225.466802242976
From Canvas Y: -15498.126506176006
Label X: -5.0
Label Y: -15.0
Downstream: POD-1
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 534
Elevation-Area Table: EDA EAST BASIN
Elevation-Outflow Table: EDA EAST BASIN
Primary Table: Elevation-Outflow
End:
Subbasin: PRE-1R
Canvas X: 4804.744643805054
Canvas Y: 78663.67382643836
Label X: -29.0
Label Y: 14.0
Area: 0.0149
Downstream: POD-1
Canopy: None

```
```

 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 74.7
 Transform: SCS
 Lag: 11
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: OS-5
Canvas X: -7674.759503239271
Canvas Y: 74103.85500347985
Label X: -30.0
Label Y: 14.0
Area: 0.01309
Downstream: POD-1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 48
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: DA-1E
Canvas X: -16554.40668479004
Canvas Y: 64264.24596446414
Area: 0.0019
Downstream: POD-1
Canopy: None
Plant Uptake Method: None
Surface: None

```
```

 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: SCS
 Lag: 5
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-1
Canvas X: 4793.83598633387
Canvas Y: 59726.24445644802
Label X: -32.0
Label Y: -20.0
Downstream: Site 19 - North Reservoir
End:
Subbasin: PRE-3R
Canvas X: -3619.031505548861
Canvas Y: 45573.810769641415
Label X: -35.0
Label Y: -18.0
Area: 0.0207
Downstream: POD-3
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 27
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-3
Canvas X: 5692.376811663096
Canvas Y: 45767.79844291666
Label X: -28.0
Label Y: -17.0
Downstream: Site 19 - North Reservoir
End:

```
```

Subbasin: PRE-2R
Canvas X: -3474.926376830117
Canvas Y: 53268.319233502014
Label X: -39.0
Label Y: -18.0
Area: 0.0086
Downstream: POD-2
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 17
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-2
Canvas X: 5304.401465112605
Canvas Y: 53139.330027376134
Label X: -31.0
Label Y: -18.0
Downstream: Site 19 - North Reservoir
End:

```
Subbasin: PRE-4R
    Canvas X: -4394.982198649843
    Canvas Y: 37038.35314553045
    Label X: -40.0
    Label Y: -20.0
    Area: 0.0056
    Downstream: POD-4
    Canopy: None
    Plant Uptake Method: None
    Surface: None
    LossRate: SCS
    Percent Impervious Area: 0.0
    Curve Number: 73
```

 Transform: SCS
 Lag: 16
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-4
Canvas X: 6190.144142646517
Canvas Y: 37210.775435906515
Label X: -32.0
Label Y: -18.0
Downstream: Site 19 - North Reservoir
End:
Reservoir: Site 19 - North Reservoir
Canvas X: 40283.90600524505
Canvas Y: 45838.339415016744
Downstream: Site-19 Reservoir
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 520.69
Elevation-Area Table: Site 19 Reservoir
Elevation-Outflow Table: Site 19 Reservoir
Primary Table: Elevation-Outflow
End:
Subbasin: PRE-5R
Canvas X: -3933.0899906202103
Canvas Y: 29007.465017569688
Label X: -44.0
Label Y: -18.0
Area: 0.0352
Downstream: POD-5
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 29
Unitgraph Type: STANDARD
Baseflow: None

```

End:
Junction: POD-5
Canvas X: 6190.144142646517
Canvas Y: 29007.465017569688
Label X: -36.0
Label Y: -19.0
Downstream: Site-19 Reservoir
End:
Subbasin: PRE-7R
Canvas X: -4394.982198649843
Canvas Y: 11431.980273197536
Label X: -34.0
Label Y: -20.0
Area: 0.0223
Downstream: POD-7

Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 30
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-7
Canvas X: 6539.221181724686
Canvas Y: 11379.074544122464
Label X: -31.0
Label Y: -20.0
Downstream: Site-19 Reservoir
End:
Subbasin: PRE-6R
Canvas X: -4394.982198649843
Canvas Y: 20549.400917134255
Label X: -40.0
Label Y: -16.0
Area: 0.0043
Downstream: POD-6
```

Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 26
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-6
Canvas X: 5841.067103568348
Canvas Y: 20455.0775601547
Label X: -30.0
Label Y: -18.0
Downstream: Site-19 Reservoir
End:
Subbasin: PRE-9R
Canvas X: 40399.69397230647
Canvas Y: -25972.16863724096
Label X: -31.0
Label Y: -21.0
Area: 0.0029
Downstream: POD-9
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 33
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-9
Canvas X: 40399.69397230647

```

Canvas Y: -19863.32045337312
Label X: -2.0
Label Y: -5.0
Downstream: Site-19 Reservoir
End:

Reservoir: Site-19 Reservoir
Canvas X: 40283.90600524505
Canvas Y: 11449.615516222555
Label X: 1.0
Label Y: -1.0

Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 520.69
Elevation-Area Table: Site 19 Reservoir
Elevation-Outflow Table: Site 19 Reservoir
Primary Table: Elevation-Outflow
End:

Subbasin: PRE-10BR
Canvas X: 6939.229369923327
Canvas Y: -76720.93367392311
From Canvas X: -63197.73402814632
From Canvas Y: -71490.31052731218
Label X: 0.0
Label Y: -2.0
Area: 0.0029
Downstream: POD-10

Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80

Transform: SCS
Lag: 33
Unitgraph Type: STANDARD
Baseflow: None
End:

Subbasin: PRE-10AR
Canvas X: -62523.229194442625
Canvas Y: -78336.3396870479
From Canvas X: -63197.73402814632
```

 From Canvas Y: -71490.31052731218
 Label X: 5.0
 Label Y: 0.0
 Area: 0.0016
 Downstream: PRE-11 TK Parkway
 Canopy: None
 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80
 Transform: SCS
 Lag: 25
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Reach: PRE-11 TK Parkway
Canvas X: 6400.760698881728
Canvas Y: -84528.72940402626
From Canvas X: -62928.07381661901
From Canvas Y: -84770.30826319466
Label X: -70.0
Label Y: -18.0
Downstream: POD-10
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1215.664
Energy Slope: 0.008
Width: 17.8
Side Slope: 0.12
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Junction: POD-10
Canvas X: 6400.760698881728
Canvas Y: -84528.72940402626
From Canvas X: -66253.37766246771
From Canvas Y: -86828.97280601399
End:

```
Subbasin: PRE-11R
```

 Canvas X: -93215.94344381365
 Canvas Y: -76451.69933840231
 From Canvas X: -63197.73402814632
 From Canvas Y: -71490.31052731218
 Label X: -67.0
 Label Y: -2.0
 Area: 0.010
 Downstream: POD-11
 Canopy: None
 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80.0
 Transform: SCS
 Lag: 19
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-11
Canvas X: -93215.94344381365
Canvas Y: -86682.60408819266
From Canvas X: -66253.37766246771
From Canvas Y: -86828.97280601399
Label X: -72.0
Label Y: -3.0
End:
Basin Schematic Properties:
Last View N: 5000.0
Last View S: -5000.0
Last View W: -5000.0
Last View E: 5000.0
Maximum View N: 53477.804796960794
Maximum View S: -61263.896628055125
Maximum View W: -117782.14367979346
Maximum View E: 17236.009823300818
Extent Method: Elements
Buffer: 0
Draw Icons: Yes
Draw Icon Labels: Name
Draw Map Objects: No
Draw Gridlines: No
Draw Flow Direction: No

```

Fix Element Locations: No
Fix Hydrologic Order: No
End:

\title{
HEC-HMS OUTPUT FILES FOR EDA WEST BASIN, EDA EAST BASIN, \& WDA BASIN / POD-1, POD-2, POD-3, POD-4, POD-5, POD-6, POD-7, POD-8, POD-9, POD-10, \& POD-11
}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMEN \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume (AC-FT) \\
\hline OS-1 & 1.57999 & 1709.8 & 02Oct2018, 13:10 & 463.2 \\
\hline PRE-8A HC & 1.57999 & 1707.8 & 02Oct2018, 13:10 & 463.2 \\
\hline PRE-8ABR & 0.0847 & 120.0 & 02Oct2018, 12:40 & 21.7 \\
\hline OS-2 & 0.058 & 104.2 & 02Oct2018, 12:30 & 17.1 \\
\hline Junction-1 & 1.72269 & 1831.2 & 02Oct2018, 13:10 & 502.0 \\
\hline PRE-8C HC & 1.72269 & 1811.1 & 02Oct2018, 13:20 & 501.9 \\
\hline PRE-8CR & 0.1898 & 256.5 & 02Oct2018, 12:40 & 47.9 \\
\hline DA-3B & 0.0040 & 12.7 & 02Oct2018, 12:10 & 1.3 \\
\hline DA-3A & 0.0413 & 131.7 & 02Oct2018, 12:10 & 13.5 \\
\hline DA-2B & 0.0030 & 9.6 & 02Oct2018, 12:10 & 1.0 \\
\hline DA-2A & 0.0312 & 99.7 & 02Oct2018, 12:10 & 10.2 \\
\hline CHAN-2A1 & 0.0312 & 99.5 & 02Oct2018, 12:10 & 10.2 \\
\hline CHAN-2A2 & 0.0312 & 98.1 & 02Oct2018, 12:10 & 10.2 \\
\hline CHAN-2A3 & 0.0312 & 95.9 & 02Oct2018, 12:10 & 10.2 \\
\hline CHAN-2A4 & 0.0312 & 87.2 & 02Oct2018, 12:10 & 10.3 \\
\hline CHAN-2A5 & 0.0725 & 207.8 & 02Oct2018, 12:10 & 23.8 \\
\hline DA-3D & 0.0040 & 12.7 & 02Oct2018, 12:10 & 1.3 \\
\hline DA-3C & 0.0461 & 147.1 & 02Oct2018, 12:10 & 15.1 \\
\hline DA-3F & 0.0027 & 8.6 & 02Oct2018, 12:10 & 0.9 \\
\hline DA-3E & 0.0366 & 116.7 & 02Oct2018, 12:10 & 12.0 \\
\hline CHAN-3A1 & 0.0366 & 110.6 & 02Oct2018, 12:10 & 12.1 \\
\hline EDA WEST & 0.011 & 37.7 & 02Oct2018, 12:10 & 4.6 \\
\hline EDA WEST BASIN & 0.1662 & 41.8 & 02Oct2018, 14:10 & 35.4 \\
\hline DA-5B & 0.0036 & 11.4 & 02Oct2018, 12:10 & 1.2 \\
\hline DA-5A & 0.0415 & 132.4 & 02Oct2018, 12:10 & 13.6 \\
\hline DA-5D & 0.0048 & 15.2 & 02Oct2018, 12:10 & 1.6 \\
\hline DA-5C & 0.0147 & 46.7 & 02Oct2018, 12:10 & 4.8 \\
\hline DA-5E & 0.0033 & 9.7 & 02Oct2018, 12:10 & 1.1 \\
\hline CHAN-4B1 & 0.0033 & 9.3 & 02Oct2018, 12:10 & 1.1 \\
\hline CHAN-4B2 & 0.0033 & 9.2 & 02Oct2018, 12:10 & 1.1 \\
\hline
\end{tabular}

Page 1
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume (AC-FT) \\
\hline CHAN-4B3 & 0.0180 & 54.8 & 02Oct2018, 12:10 & 5.9 \\
\hline CHAN-4B4 & 0.0180 & 53.9 & 02Oct2018, 12:10 & 5.9 \\
\hline CHAN-4B5 & 0.0180 & 51.5 & 02Oct2018, 12:10 & 5.9 \\
\hline CHAN-4B6 & 0.0180 & 49.6 & 02Oct2018, 12:10 & 5.9 \\
\hline CHAN-4B7 & 0.0595 & 180.8 & 02Oct2018, 12:10 & 19.5 \\
\hline CHAN-4B8 & 0.0595 & 169.0 & 02Oct2018, 12:10 & 19.5 \\
\hline DA-4B & 0.005 & 15.9 & 02Oct2018, 12:10 & 1.6 \\
\hline DA-4A & 0.0350 & 111.5 & 02Oct2018, 12:10 & 11.4 \\
\hline DA-4D & 0.0027 & 8.6 & 02Oct2018, 12:10 & 0.9 \\
\hline DA-4C & 0.0221 & 70.5 & 02Oct2018, 12:10 & 7.2 \\
\hline DA-4E & 0.0047 & 13.9 & 02Oct2018, 12:10 & 1.5 \\
\hline CHAN-4A1 & 0.0047 & 13.0 & 02Oct2018, 12:10 & 1.5 \\
\hline CHAN-4A2 & 0.0047 & 12.6 & 02Oct2018, 12:10 & 1.5 \\
\hline CHAN-4A3 & 0.0268 & 82.5 & 02Oct2018, 12:10 & 8.8 \\
\hline CHAN-4A4 & 0.0268 & 78.1 & 02Oct2018, 12:10 & 8.8 \\
\hline CHAN-4A5 & 0.0268 & 75.6 & 02Oct2018, 12:10 & 8.8 \\
\hline WDA & 0.010 & 34.3 & 02Oct2018, 12:10 & 4.1 \\
\hline WDA BASIN & 0.1313 & 22.5 & 02Oct2018, 15:30 & 21.8 \\
\hline PRE-8DR & 0.0312 & 44.1 & 02Oct2018, 12:40 & 8.0 \\
\hline Junction-2 & 0.0312 & 44.1 & 02Oct2018, 12:40 & 8.0 \\
\hline OS-3 & 0.02334 & 41.1 & 02Oct2018, 12:30 & 6.9 \\
\hline Junction-3 & 0.05454 & 83.6 & 02Oct2018, 12:40 & 14.9 \\
\hline OS-3 REACH & 0.05454 & 81.9 & 02Oct2018, 12:50 & 14.9 \\
\hline POD-8 & 2.26453 & 2060.3 & 02Oct2018, 13:20 & 621.8 \\
\hline DA-1B & 0.0055 & 17.5 & 02Oct2018, 12:10 & 1.8 \\
\hline DA-1A & 0.0410 & 130.8 & 02Oct2018, 12:10 & 13.4 \\
\hline DA-1C & 0.0042 & 11.0 & 02Oct2018, 12:10 & 1.4 \\
\hline CHAN-1A1 & 0.0042 & 10.4 & 02Oct2018, 12:10 & 1.4 \\
\hline CHAN-1A2 & 0.0042 & 10.4 & 02Oct2018, 12:20 & 1.4 \\
\hline CHAN-1A3 & 0.0452 & 137.0 & 02Oct2018, 12:10 & 14.8 \\
\hline CHAN-1A4 & 0.0452 & 134.9 & 02Oct2018, 12:10 & 14.8 \\
\hline EDA EAST & 0.003 & 10.3 & 02Oct2018, 12:10 & 1.2 \\
\hline DA-1D & 0.0023 & 6.4 & 02Oct2018, 12:10 & 0.8 \\
\hline EDA EAST BASIN & 0.0505 & 106.3 & 02Oct2018, 12:20 & 16.8 \\
\hline PRE-1R & 0.0149 & 31.9 & 02Oct2018, 12:10 & 3.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume
(AC-FT) \\
\hline OS-5 & 0.01309 & 17.8 & 02Oct2018, 12:50 & 3.9 \\
\hline DA-1E & 0.0019 & 5.8 & 02Oct2018, 12:10 & 0.6 \\
\hline POD-1 & 0.08039 & 150.9 & 02Oct2018, 12:20 & 25.2 \\
\hline PRE-3R & 0.0207 & 32.6 & 02Oct2018, 12:30 & 5.2 \\
\hline POD-3 & 0.0207 & 32.6 & 02Oct2018, 12:30 & 5.2 \\
\hline PRE-2R & 0.0086 & 16.3 & 02Oct2018, 12:20 & 2.2 \\
\hline POD-2 & 0.0086 & 16.3 & 02Oct2018, 12:20 & 2.2 \\
\hline PRE-4R & 0.0056 & 10.9 & 02Oct2018, 12:20 & 1.4 \\
\hline POD-4 & 0.0056 & 10.9 & 02Oct2018, 12:20 & 1.4 \\
\hline Site 19 - North Reservoir & 0.11529 & 3.9 & 03Oct2018, 00:30 & 10.5 \\
\hline PRE-5R & 0.0352 & 53.2 & 02Oct2018, 12:30 & 8.9 \\
\hline POD-5 & 0.0352 & 53.2 & 02Oct2018, 12:30 & 8.9 \\
\hline PRE-7R & 0.0223 & 33.0 & 02Oct2018, 12:30 & 5.6 \\
\hline POD-7 & 0.0223 & 33.0 & 02Oct2018, 12:30 & 5.6 \\
\hline PRE-6R & 0.0043 & 6.9 & 02Oct2018, 12:30 & 1.1 \\
\hline POD-6 & 0.0043 & 6.9 & 02Oct2018, 12:30 & 1.1 \\
\hline PRE-9R & 0.0029 & 4.1 & 02Oct2018, 12:40 & 0.7 \\
\hline POD-9 & 0.0029 & 4.1 & 02Oct2018, 12:40 & 0.7 \\
\hline Site-19 Reservoir & 2.44452 & 62.6 & 03Oct2018, 01:40 & 167.8 \\
\hline PRE-10BR & 0.0029 & 4.8 & 02Oct2018, 12:40 & 0.9 \\
\hline PRE-10AR & 0.0016 & 3.0 & 02Oct2018, 12:30 & 0.5 \\
\hline PRE-11 TK Parkway & 0.0016 & 3.0 & 02Oct2018, 12:40 & 0.5 \\
\hline POD-10 & 0.0045 & 7.8 & 02Oct2018, 12:40 & 1.3 \\
\hline PRE-11R & 0.010 & 21.0 & 02Oct2018, 12:20 & 3.0 \\
\hline POD-11 & 0.010 & 21.0 & 02Oct2018, 12:20 & 3.0 \\
\hline
\end{tabular}

Page 3

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-1R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(31.9(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(6.3(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(2.4(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-2R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(16.3(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Precipitation Volume: & \(3.6(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(2.2(\) AC-FT \()\) \\
Loss Volume: & \(1.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(2.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(2.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-3R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(32.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(8.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(5.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(3.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(5.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(5.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-4R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(10.9(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Precipitation Volume: & \(2.4(\) AC-FT \()\) & Direct Runoff Volume: & 1.4 (AC-FT) \\
Loss Volume: & \(0.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(1.4(\) AC-FT \()\) & Discharge Volume: & 1.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-5R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(53.2(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(14.8(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(8.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(6.0(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(8.9(\) AC-FT \()\) & Discharge Volume: & \(8.9(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-6R
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(6.9(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(1.8(\) AC-FT \()\) & Direct Runoff Volume: & 1.1 (AC-FT) \\
Loss Volume: & \(0.7(\) AC-FT \()\) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(1.1(\) AC-FT \()\) & Discharge Volume: & 1.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-7R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(33.0(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(9.4(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(5.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(3.8(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(5.6(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(5.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-8ABR
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(120.0(\) CFS \()\) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018}, 12: 40\) \\
Precipitation Volume: & \(35.7(\) AC-FT \()\) & Direct Runoff Volume: & \(21.7(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(13.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(21.7(\) AC-FT \()\) & Discharge Volume: & 21.7 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-8CR
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(256.5(\) CFS \()\) & Date/Time of Peak Discharge: & 02 Oct2018, 12:40 \\
Precipitation Volume: & \(80.0(\) AC-FT \()\) & Direct Runoff Volume: & 47.9 (AC-FT) \\
Loss Volume: & \(32.1(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(47.9(\) AC-FT \()\) & Discharge Volume: & 47.9 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-8DR
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 44.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Precipitation Volume: & 13.1 (AC-FT) & Direct Runoff Volume: & \(8.0(\) AC-FT \()\) \\
Loss Volume: & \(5.2(\) AC-FT & Baseflow Volume: & \(0.0(\) AC-FT) \\
Excess Volume: & \(8.0(\) AC-FT \()\) & Discharge Volume: & \(8.0(\) AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-9R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 4.1 (CFS) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018,12:40}\) \\
Precipitation Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 0.7 (AC-FT) \\
Loss Volume: & \(0.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(0.7(\) AC-FT \()\) & Discharge Volume: & 0.7 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-10AR
\begin{tabular}{|c|c|c|c|}
\hline Project: & City of Waco Landfill & Simulation Run: \(25 \mathrm{yr}, 2\) & 4 hr (post) \\
\hline \multicolumn{4}{|c|}{Subbasin: PRE-10AR} \\
\hline Start of Run: 020 & 2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 040 & 4Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: 07A & 7Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline \multicolumn{4}{|c|}{Volume Units: AC-FT} \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Discharge: & 3.0 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
\hline Precipitation Volume: & e: \(\quad 0.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 0.5 (AC-FT) \\
\hline Loss Volume: & 0.2 (AC-FT) & Baseflow Volume: & 0.0 (AC-FT) \\
\hline Excess Volume: & 0.5 (AC-FT) & Discharge Volume: & 0.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-10BR


Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: PRE-11R
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(21.0(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Precipitation Volume: & \(4.2(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(3.0(\) (AC-FT) \\
Loss Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(3.0(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & 3.0 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: OS-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 1709.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:10 \\
Precipitation Volume: & 665.7 (AC-FT) & Direct Runoff Volume: & 463.2 (AC-FT) \\
Loss Volume: & 202.5 (AC-FT) & Baseflow Volume: & \(0.0(A C-F T)\) \\
Excess Volume: & \(463.2(\) AC-FT \()\) & Discharge Volume: & 463.2 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: OS-2


Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: OS-3
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(41.1(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & \(9.8(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(6.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(2.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(6.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(6.9(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: OS-5
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(17.8(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:50 \\
Precipitation Volume: & \(5.5(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(1.7(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(3.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & 3.9 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: PRE-8A HC
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 1709.8 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 13:10 \\
\hline Peak Discharge: & 1707.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:10 \\
\hline Inflow Volume: & 463.2 (AC-FT) & Discharge Volume: & 463.2 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: PRE-8C HC
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 1831.2 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 13:10 \\
\hline Peak Discharge: & 1811.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:20 \\
\hline Inflow Volume: & 502.0 (AC-FT) & Discharge Volume: & 501.9 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: PRE-11 TK Parkway
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 3.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:30 \\
Peak Discharge: & 3.0 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Inflow Volume: & 0.5 (AC-FT) & Discharge Volume: & 0.5 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: OS-3 REACH
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 83.6 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:40 \\
Peak Discharge: & 81.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:50 \\
Inflow Volume: & 14.9 (AC-FT) & Discharge Volume: & 14.9 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: Junction-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(1831.2(C F S)\) & Date/Time of Peak Discharge: & O2Oct2018, 13:10 \\
Volume: & \(502.0(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: Junction-2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 44.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Volume: & \(8.0(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: Junction-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(83.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & O2Oct2018, 12:40 \\
Volume: & \(14.9(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-1A1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 11.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 10.4 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 1.4 (AC-FT) & Discharge Volume: & 1.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-1A2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 10.4 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 10.4 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Inflow Volume: & 1.4 (AC-FT) & Discharge Volume: & 1.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-1A3
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline \multirow[t]{3}{*}{Compute Time:} & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 139.1 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 137.0 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 14.8 (AC-FT) & Discharge Volume: & 14.8 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-1A4
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline \multirow[t]{3}{*}{Compute Time:} & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 137.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 134.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 14.8 (AC-FT) & Discharge Volume: & 14.8 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-2A1
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 07A} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 99.7 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 99.5 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 10.2 (AC-FT) & Discharge Volume: & 10.2 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-2A2
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 99.5 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 98.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 10.2 (AC-FT) & Discharge Volume: & 10.2 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-2A3
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 07A} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 98.1 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 95.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 10.2 (AC-FT) & Discharge Volume: & 10.2 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-2A4
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 07A} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 95.9 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 87.2 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 10.2 (AC-FT) & Discharge Volume: & 10.3 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-2A5
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 219.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 207.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 23.8 (AC-FT) & Discharge Volume: & 23.8 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-3A1
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 116.7 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 110.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 12.0 (AC-FT) & Discharge Volume: & 12.1 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4A1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 13.9 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 13.0 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 1.5 (AC-FT) & Discharge Volume: & 1.5 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4A2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 13.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 12.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 1.5 (AC-FT) & Discharge Volume: & 1.5 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4A3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 83.1 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 82.5 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 8.8 (AC-FT) & Discharge Volume: & 8.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4A4
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 82.5 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 78.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 8.8 (AC-FT) & Discharge Volume: & 8.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4A5
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 78.1 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 75.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 8.8 (AC-FT) & Discharge Volume: & 8.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Inflow: & 9.7 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 9.3 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 1.1 (AC-FT) & Discharge Volume: & 1.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 9.3 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
Peak Discharge: & 9.2 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Inflow Volume: & 1.1 (AC-FT) & Discharge Volume: & 1.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B3


Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B4
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 0} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 54.8 (CFS) D & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & e: \(\quad 53.9\) (CFS) D & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 5.9 (AC-FT) D & Discharge Volume: & 5.9 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B5
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 02 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 04 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 0} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & is: \(\quad\) AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 53.9 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & 51.5 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 5.9 (AC-FT) & Discharge Volume: & 5.9 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B6
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 0} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 51.5 (CFS) D & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & e: \(\quad 49.6\) (CFS) D & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 5.9 (AC-FT) D & Discharge Volume: & 5.9 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B7
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time: 07A} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 182.0 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 180.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 19.5 (AC-FT) & Discharge Volume: & 19.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reach: CHAN-4B8
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 0 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline \multirow[t]{2}{*}{Compute Time:} & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 180.8 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:10 \\
\hline Peak Discharge: & : 169.0 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
\hline Inflow Volume: & 19.5 (AC-FT) & Discharge Volume: & 19.5 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-1A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(130.8(\) CFS \()\) & Date/Time of Peak Discharge: & 02 Oct2018, 12:10 \\
Precipitation Volume: & \(15.0(\) AC-FT \()\) & Direct Runoff Volume: & 13.4 (AC-FT) \\
Loss Volume: & \(3.4(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \\
Excess Volume: & \(11.6(\) AC-FT \()\) & Discharge Volume: & 13.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-1B
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(17.5(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(2.3(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.8(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.8(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.8(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-1C
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(11.0(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.8(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.4(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.4(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.4(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.4(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-1D
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(6.4(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.0(\) AC-FT \()\) & Direct Runoff Volume: & 0.8 (AC-FT) \\
Loss Volume: & \(0.2(\) AC-FT \()\) & Baseflow Volume: & \(0.0(A C-F T)\) \\
Excess Volume: & \(0.8(\) AC-FT \()\) & Discharge Volume: & 0.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-1E
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(5.8(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(0.8(\) AC-FT \()\) & Direct Runoff Volume: & 0.6 (AC-FT) \\
Loss Volume: & \(0.2(\) AC-FT \()\) & Baseflow Volume: & \(0.0(A C-F T)\) \\
Excess Volume: & \(0.6(\) AC-FT \()\) & Discharge Volume: & 0.6 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-2A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 99.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(11.9(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(10.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(2.7(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(9.2(\) AC-FT \()\) & Discharge Volume: & \(10.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-2B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(9.6(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.0(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.0(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.0(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 131.7 (CFS) & Date/Time of Peak Discharge: & 02 Oct2018, 12:10 \\
Precipitation Volume: & \(15.7(\) AC-FT \()\) & Direct Runoff Volume: & 13.5 (AC-FT) \\
Loss Volume: & \(3.5(\) AC-FT & Baseflow Volume: & \(0.0(\) AC-FT \\
Excess Volume: & \(12.2(\) AC-FT \()\) & Discharge Volume: & 13.5 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3B
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(12.7(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.4(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3C
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 147.1 (CFS) & Date/Time of Peak Discharge: & 02 Oct2018, 12:10 \\
Precipitation Volume: & 17.7 (AC-FT) & Direct Runoff Volume: & 15.1 (AC-FT) \\
Loss Volume: & \(4.0(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \\
Excess Volume: & \(13.7(\) AC-FT \()\) & Discharge Volume: & 15.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3D
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25 -year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(12.7(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.4(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3E
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 116.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & 14.3 (AC-FT) & Direct Runoff Volume: & \(12.0(\) AC-FT ) \\
Loss Volume: & \(3.2(\) AC-FT & Baseflow Volume: & \(0.0(\) AC-FT) \\
Excess Volume: & 11.1 (AC-FT) & Discharge Volume: & 12.0 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-3F
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 8.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.1(\) AC-FT \()\) & Direct Runoff Volume: & 0.9 (AC-FT) \\
Loss Volume: & \(0.3(\) AC-FT \()\) & Baseflow Volume: & \(0.0(A C-F T)\) \\
Excess Volume: & \(0.9(\) AC-FT \()\) & Discharge Volume: & 0.9 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-4A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(111.5(\) CFS \()\) & Date/Time of Peak Discharge: & 02 Oct2018, 12:10 \\
Precipitation Volume: & \(12.6(\) AC-FT \()\) & Direct Runoff Volume: & 11.4 (AC-FT) \\
Loss Volume: & \(2.9(\) AC-FT & Baseflow Volume: & \(0.0(\) AC-FT \\
Excess Volume: & \(9.8(\) AC-FT \()\) & Discharge Volume: & 11.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-4B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(15.9(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(2.1(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-4C
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(70.5(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(8.2(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(7.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(1.8(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(6.3(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(7.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-4D
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(8.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.1(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(0.9(\) AC-FT \()\) \\
Loss Volume: & \(0.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(0.9(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(0.9(\) (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-4E
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(13.9(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(2.0(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.5(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.4(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.5(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.5(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-5A
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 132.4 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(16.0(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(13.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(3.6(\) AC-FT & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(12.4(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & 13.6 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-5B
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(11.4(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.5(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-5C
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(46.7(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(4.2(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(4.8(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.9(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(3.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(4.8(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-5D
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(15.2(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(2.0(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.5(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: DA-5E
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 20:44:29 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 9.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.4(\) AC-FT \()\) & Direct Runoff Volume: & 1.1 (AC-FT) \\
Loss Volume: & \(0.3(\) AC-FT \()\) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(1.1(\) AC-FT \()\) & Discharge Volume: & 1.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 150.9 (CFS) & Date/Time of Peak Discharge: & O2Oct2018, 12:20 \\
Volume: & \(25.2(\) AC-FT \()\) & &
\end{tabular}
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 16.3 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Volume: & \(2.2(\) AC-FT \()\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 32.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Volume: & \(5.2(\) AC-FT \()\) & &
\end{tabular}
Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-4
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 10.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
Volume: & \(1.4(\) AC-FT \()\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-5
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(53.2(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Volume: & \(8.9(\) AC-FT \()\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-6
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 6.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Volume: & \(1.1(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-7
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(33.0(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Volume: & \(5.6(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: POD-8
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

\section*{Computed Results}
Peak Discharge: 2060.3 (CFS) Date/Time of Peak Discharge: \(\quad\) O2Oct2018, 13:20
Volume: 621.8 (AC-FT)

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post) Junction: POD-9
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
Peak Discharge: 4.1 (CFS) Date/Time of Peak Discharge: 02Oct2018, 12:40

Volume: \(\quad 0.7\) (AC-FT)

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: POD-10
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(7.8(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:40 \\
Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Junction: POD-11
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 02 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 04 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: 07 & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
\hline & Volume Units: & : AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Discharge: & : 21.0 (CFS) D & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
\hline Volume: & 3.0 (AC-FT) & & \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: EDA EAST
\begin{tabular}{llll} 
Start of Run: & O2Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018,00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(10.3(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(1.3(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(1.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill
Reservoir: \(\begin{gathered}\text { Simulation Run: } \\ \text { EDA EAST BASIN }\end{gathered}\)
\begin{tabular}{|c|c|c|c|}
\hline Start of Run: 02 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 04 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: 07 & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 151.7 (CFS) & Date/Time of Peak Inflow: & 02Oct2018, 12:10 \\
\hline Peak Discharge: & 106.3 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:20 \\
\hline Inflow Volume: & 16.8 (AC-FT) & Peak Storage: & 4.7 (AC-FT) \\
\hline Discharge Volume: & : \(\quad 16.8\) (AC-FT) & Peak Elevation: & 537.7 (FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: EDA WEST
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(37.7(\mathrm{CFS})\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(4.6(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(4.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.1(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(4.6(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(4.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Reservoir: EDA WEST BASIN
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
& \multicolumn{2}{c}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Inflow: & 503.2 (CFS) & Date/Time of Peak Inflow: & 02Oct2018, 12:10 \\
Peak Discharge: & 41.8 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 14:10 \\
Inflow Volume: & 55.5 (AC-FT) & Peak Storage: & 36.6 (AC-FT) \\
Discharge Volume: & 35.4 (AC-FT) & Peak Elevation: & 535.9 (FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)
Subbasin: WDA
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
Compute Time: & 07Apr2020, 22:21:55 & Control Specifications: & 48 -hour \\
& \multicolumn{2}{c|}{ Volume Units: } & AC-FT
\end{tabular}

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(34.3(\) CFS \()\) & Date/Time of Peak Discharge: & 02Oct2018, 12:10 \\
Precipitation Volume: & \(4.2(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & 4.1 (AC-FT) \\
Loss Volume: & \(0.1(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(4.1(\) AC-FT \()\) & Discharge Volume: & 4.1 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Project:} & City of Waco Landfill & \multicolumn{2}{|l|}{Simulation Run: \(25 \mathrm{yr}, 24 \mathrm{hr}\) (post)} \\
\hline & Reservoir: Sit & 19 - North Reservoir & \\
\hline Start of Run: 02 & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: 0 & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: 0 & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
\hline \multicolumn{2}{|r|}{Volume Units:} & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 206.5 (CFS) & Date/Time of Peak Inflow: & 02Oct2018, 12:20 \\
\hline Peak Discharge: & 3.9 (CFS) & Date/Time of Peak Discharge: & 03Oct2018, 00:30 \\
\hline Inflow Volume: & 34.0 (AC-FT) & Peak Storage: & 29.3 (AC-FT) \\
\hline Discharge Volume: & e: \(\quad 10.5\) (AC-FT) & Peak Elevation: & 520.8 (FT) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Project: & City of Waco Landfill Reservoir: & Simulation Run: \(25 \mathrm{yr}, 2\) Site-19 Reservoir & 4 hr (post) \\
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & POST DEVELOPMENT \\
\hline End of Run: & 04Oct2018, 00:00 & Meteorologic Model: & 25-year, 24-hour \\
\hline Compute Time: 0 & 07Apr2020, 22:21:55 & Control Specifications: & 48-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 2101.7 (CFS) & Date/Time of Peak Inflow: & 02Oct2018, 13:20 \\
\hline Peak Discharge: & 62.6 (CFS) & Date/Time of Peak Discharge: & 03Oct2018, 01:40 \\
\hline Inflow Volume: & 648.6 (AC-FT) & Peak Storage: & 568.6 (AC-FT) \\
\hline Discharge Volume: & : \(\quad 167.8\) (AC-FT) & Peak Elevation: & 523.0 (FT) \\
\hline
\end{tabular}

\section*{APPENDIX 6A-D}

\section*{DISCHARGE HYDROGRAPHS}


Inclusive of pages 6A-D-1 to 6A-D-12












\section*{APPENDIX 6A-E}

\section*{HYDRAULIC ANALYSIS}
- Overland Flow Velocity Analysis
- Drainage Swale Flow Analysis
- Downchute Flow Analysis
- Perimeter Channel Flow Analysis (HydroCalc Output Files)
- Hydraulic Analysis References
- Hydraulic Analysis Drawings 6A-E. 1 through 6A-E. 5


\section*{SCS Engineers}

TBPE Reg. \# F-3407
Inclusive of pages 6A-E-1 to 6A-E-77

\section*{OVERLAND FLOW VELOCITY ANALYSIS}

\section*{INTERMEDIATE COVER - OVERLAND FLOW VELOCITY}

Prep By: BG
Date: March 2019

\section*{CITY OF WACO LANDFILL \\ INTERMEDIATE COVER OVERLAND FLOW VELOCITY}

\section*{Required:}

Method: 1. Determine the time of concentration \(\left(\mathrm{t}_{\mathrm{C}}\right)\) and sheet flow velocity on intermediate cover using the Manning's Kinematic Solution.
2. Determine the shallow concentrated flow velocity on intermediate cover using a derivation of Manning's Equation.
3. Compare peak velocity to permissible non-erodible velocity.

References: 1. Texas Department of Transportation, Bridge Division Hydraulic Manual, November 2004.
2. Natural Resouces Conservation Service, Urban Hydrology for Small Watersheds, Technical Release 55, Junes 1986.

Solution: \(\quad\) Calculate the expected peak overland flow velocity on the intermediate cover, using the above methods, for both Case 1-390-foot Intermediate Sideslope and Case 2-650-foot Intermediate Topslope.

Note: the sideslope length is the greatest spacing between drainage swales on intermediate cover, and the topslope length is the greatest length anticipated on intermediate topslopes prior to additional aerial fill above the first row of drainage swales on intermediate cover (see Drawing 6AE.3).

\title{
CITY OF WACO LANDFILL \\ INTERMEDIATE COVER \\ OVERLAND FLOW VELOCITY
}

\section*{Case 1: 390-foot Intermediate Sideslope:}
1. Determine the time of concentration \(\left(\mathrm{t}_{\mathrm{C}}\right)\) and sheet flow velocity on intermediate cover sideslopes using the Manning's Kinematic Solution.

\section*{Sheet Flow Velocity:}
\begin{tabular}{rcl} 
Sheet Flow Length \(=\) & 100 & ft \\
Slope \(=\) & 0.25 & \(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Sheet Flow Time of Concentration Equation:


Where: \(\quad \begin{array}{rll}\mathrm{t}_{\mathrm{c}} & = & \\ \mathrm{n} & \text { sheet flow time of concentration (hr) } \\ \mathrm{L} & = & \\ & \text { Manning's roughness coefficient } \\ \mathrm{P}_{25,24} & = & \text { slope length } \\ \mathrm{S}= & & \text { 25-year, 24-hour rainfall depth (in) } \\ & & \text { slope }(\mathrm{ft} / \mathrm{ft})\end{array}\)

Sheet Flow Velocity Equation:
\[
V=\frac{L}{60 t_{c}}
\]

Where: \(\quad V=\quad\) sheet flow velocity (fps)
\(\mathrm{t}_{\mathrm{c}}=\quad\) sheet flow time of concentration (min)
\(\mathrm{L}=\quad\) sheet flow length ( ft )

\section*{Calculate \(\mathbf{t}_{\mathrm{c}}\) :}
\begin{tabular}{ccl}
\(\mathrm{n}=\) & 0.09 & (See page 6A-E-75, 60 percent of the full surface \\
\(\mathrm{L}=\) & 100 & roughness coefficient for short grass is used, \\
\(\mathrm{P}_{25,24}=\) & 7.90 & consistent with a minimum of 60 percent vegetation on \\
\(\mathrm{S}=\) & 0.25 & intermediate cover). \\
\hline \(\mathrm{t}_{\mathrm{c}}=\) & \begin{tabular}{cl}
0.025 & hr \\
& 1.51 \\
& min \\
\end{tabular}
\end{tabular}

\section*{Calculate the sheet flow velocity:}
\begin{tabular}{lll}
\(\mathrm{L}=\) & 100 & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 1.51 & \\
\hline \(\mathrm{~V}=\) & 1.10 & fps \\
\hline
\end{tabular}

\title{
CITY OF WACO LANDFILL \\ INTERMEDIATE COVER OVERLAND FLOW VELOCITY
}
2. Determine the shallow concentrated flow velocity on the sideslopes using a derivation of Manning's Equation.

\section*{Shallow Concentrated Flow Velocity:}
\begin{tabular}{rlll} 
Shallow Concentrated Flow Length & \(=\) & 300 & ft \\
Slope & \(=\) & 0.25 & \(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Rational Method Equation:
\[
\mathrm{Q}=\quad \mathrm{CiA}
\]
\[
\text { Where: } \quad \begin{array}{lll}
\mathrm{Q}= & \text { flow rate (cfs) } \\
\mathrm{C}= & & \text { runoff coefficient } \\
\mathrm{i}= & & \text { rainfall intensity (in/hr) } \\
\mathrm{A} & = & \\
\text { drainage area }(\mathrm{ac}) \text { (assume unit width for flow area) }
\end{array}
\]

Intensity Equation:
\[
\mathrm{i}=\mathrm{b} /\left(\mathrm{t}_{\mathrm{c}}+\mathrm{d}\right)^{\mathrm{e}}
\]

Where: \(\quad \mathrm{i}=\quad\) rainfall intensity (in/hr)
\(\mathrm{b}=\) Constant for Limestone County \(\quad=\quad 103.56\)
\(\mathrm{d}=\) Constant for Limestone County \(\quad=\quad 11.0\)
\(\mathrm{e}=\) Constant for Limestone County \(\quad=\quad 0.806\)
\(t_{c}=\quad\) time of concentration (min) (noted below)

Time of Concentration Equation:
\[
\mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\mathrm{~V}} \quad=\quad 1.89 \quad \min (\text { see note below })
\]

Note: ( \(\mathrm{t}_{\mathrm{c}}\) is solved through trial and error by manually adjusting the value for the time of concentration until the ratio of length to velocity and \(t_{c}\) to reach the peak flow rate, as calculated using the Rational Method, are equal)

\section*{Calculate peak flow rate for unit width of flow:}
\begin{tabular}{rclll}
\(\mathrm{C}=\) & 0.77 & & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 1.89 & min & & (see note above) \\
\(\mathrm{i}=\) & 13.20 & \(\mathrm{in} / \mathrm{hr}\) & \\
\(\mathrm{A}=\) & 0.0069 & ac & & (Unit width of flow, \(\mathrm{w}=1 \mathrm{ft}\).
\end{tabular}
\begin{tabular}{|lll|}
\hline \(\mathrm{Q}=\) & 0.070 & cfs \\
\hline
\end{tabular}

Calculate approximate depth of flow derived from Manning's Method Equation (see attached derivation, page 6A-E-69):
\[
\begin{aligned}
& d=\left(\frac{Q n}{1.49 S^{0.5}}\right)^{0.6} \\
& \mathrm{Q}=\quad 0.070 \quad \mathrm{cfs} \\
& \mathrm{n}=\quad 0.025 \quad \text { (Manning's } \mathrm{n} \text { for channel flow, conservative) } \\
& \mathrm{S}=\quad 0.25 \quad \mathrm{ft} / \mathrm{ft}
\end{aligned}
\]

\section*{Calculate shallow concentrated flow velocity:}
\[
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\mathrm{~d}} \\
& \mathrm{~V}=\frac{2.65 \mathrm{fps}}{}
\end{aligned}
\]
3. Compare peak velocity to permissible non-erodible velocity.

> Case 1 Conclusion:
> The peak velocity on the sideslope is associated with the shallow concentrated flow component of overland flow. The calculated sideslope shallow concentrated flow velocity is less than the permissible non-erodible velocity of \(3.0 \mathrm{ft} / \mathrm{s}\) on intermediate cover, as discussed in Attachment 6 A , Subsection 2.2 . Therefore, the expected peak velocity is acceptable on the intermediate sideslopes following placement of drainage swales at a horizontal spacing of 400 feet on a \(4 \mathrm{H}: 1 \mathrm{~V}\) slope.

\section*{Case 2: 650-foot Intermediate Topslope:}
1. Determine the time of concentration \(\left(\mathrm{t}_{\mathrm{C}}\right)\) and sheet flow velocity on intermediate cover topslopes using the Manning's Kinematic Solution.

\section*{Sheet Flow Velocity:}
\[
\begin{array}{rll}
\text { Sheet Flow Length } & = & 100 \\
\mathrm{ft} \\
\text { Slope } & = & 0.05
\end{array} \mathrm{ft} / \mathrm{ft}
\]

Sheet Flow Time of Concentration Equation:
\[
\mathrm{t}_{\mathrm{c}}=\frac{0.007(\mathrm{~nL})^{0.8}}{\left(\mathrm{P}_{25,24}\right)^{0.5} \mathrm{~S}^{0.4}} \quad \text { (as described above) }
\]

Date: March 2019

Sheet Flow Velocity Equation:
\[
V=\frac{L}{60 t_{c}} \text { (as described above) }
\]

\section*{Calculate \(\mathrm{t}_{\mathrm{c}}\) :}
\begin{tabular}{ccl}
\(\mathrm{n}=\) & 0.09 & (See page 6A-E-75, 60 percent of the full surface \\
\(\mathrm{L}=\) & 100 & roughness coefficient for short grass is used, \\
\(\mathrm{P}_{25,24}=\) & 7.90 & consistent with a minimum of 60 percent vegetation on \\
\(\mathrm{S}=\) & 0.05 & intermediate cover). \\
\begin{tabular}{ccl}
\(\mathrm{t}_{\mathrm{c}}=\) & 0.048 & hr \\
& 2.87 & min \\
\end{tabular}
\end{tabular}

Calculate the sheet flow velocity:
\[
\begin{array}{ll}
\mathrm{L}= & 100 \\
\mathrm{t}_{\mathrm{c}}= & 2.87
\end{array}
\]
\[
\begin{array}{lll}
\hline \mathrm{V}= & 0.58 & \mathrm{fps} \\
\hline
\end{array}
\]
2. Determine the shallow concentrated flow velocity on the topslopes using a derivation of Manning's Equation.

\section*{Shallow Concentrated Flow Velocity:}
\begin{tabular}{rcl} 
Shallow Concentrated Flow Length & \(=\) & 550 \\
Slope \(=\) & 0.05 & ft \\
\(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Rational Method Equation:
\begin{tabular}{cll}
\(\mathrm{Q}=\) & CiA & (as described above) \\
Where: & \(\mathrm{Q}=\) & flow rate (cfs) \\
& \(\mathrm{C}=\) & runoff coefficient \\
\(\mathrm{i}=\) & rainfall intensity (in/hr) \\
& \(\mathrm{A}=\) & drainage area (ac) (assume unit width for flow area)
\end{tabular}

Intensity Equation:
\[
\mathrm{i}=\mathrm{b} /\left(\mathrm{t}_{\mathrm{c}}+\mathrm{d}\right)^{\mathrm{e}} \quad \text { (as described above) }
\]

Time of Concentration Equation:
\(\mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\mathrm{V}} \quad=\quad 4.90 \quad \min\) (see note below)

Note: ( \(\mathrm{t}_{\mathrm{c}}\) is solved through trial and error by manually adjusting the value for the time of concentration until the ratio of length to velocity and \(t_{c}\) to reach the peak flow rate, as calculated using the Rational Method, are equal)

\section*{Calculate peak flow rate for unit width of flow:}
\begin{tabular}{ccll}
\(\mathrm{C}=\) & 0.7 & & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 4.90 & min & (see note above) \\
\(\mathrm{i}=\) & 11.14 & \(\mathrm{in} / \mathrm{hr}\) & \\
\(\mathrm{A}=\) & 0.0126 & ac & (Unit width of flow, \(\mathrm{w}=1 \mathrm{ft}\). \\
& & & Therefore, \(\mathrm{A}=\mathrm{L} / 43560\) )
\end{tabular}
\(\mathrm{Q}=0.098 \mathrm{cfs}\)

Calculate approximate depth of flow derived from Manning's Method Equation (see attached derivation, page 6A-E-69):
\[
d=\left(\frac{Q n}{1.49 S^{0.5}}\right)^{0.6}
\]
\[
\mathrm{Q}=\quad 0.098 \quad \mathrm{cfs}
\]
\[
\mathrm{n}=\quad 0.025 \quad \text { (Manning's } \mathrm{n} \text { for channel flow, conservative) }
\]
\[
\mathrm{S}=\quad 0.05 \mathrm{ft} / \mathrm{ft}
\]
\begin{tabular}{|llllll|}
\hline \(\mathrm{d}=\) & 0.053 & ft & \(=\) & 0.63 & in \\
\hline
\end{tabular}

Calculate shallow concentrated flow velocity:
\[
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\mathrm{~d}} \\
& \mathrm{~V}=1.87 \mathrm{fps}
\end{aligned}
\]
3. Compare peak velocity to permissible non-erodible velocity.

> Case 2 Conclusion:
> The peak velocity on the topslope is associated with the shallow concentrated flow component of overland flow. The calculated topslope shallow concentrated flow velocity is less than the permissible non-erodible velocity of 3.0 ft /s on intermediate cover, as discussed in Attachment 6 A , Subsection 2.2 . Therefore, the expected peak velocity is acceptable on the worst-case intermediate topslope length. No other structural controls are necessary on the topslope for this scenario.

\section*{FINAL COVER - OVERLAND FLOW VELOCITY}

\section*{CITY OF WACO LANDFILL \\ FINAL COVER OVERLAND FLOW VELOCITY}

Required:

Method:

References:

Calculate the peak velocity on final cover sideslopes and topslopes. Compare calculated peak velocities to permissible non-erodible flow velocity for final cover.
1. Determine the time of concentration ( \(\mathrm{t}_{\mathrm{C}}\) ) and sheet flow velocity on final cover using the Manning's Kinematic Solution.
2. Determine the shallow concentrated flow velocity on final cover using a derivation of Manning's Equation.
3. Compare peak velocity to permissible non-erodible velocity.
1. Texas Department of Transportation, Bridge Division Hydraulic Manual, November 2004.
2. Natural Resouces Conservation Service, Urban Hydrology for Small Watersheds, Technical Release 55, Junes 1986.

\section*{Solution:}

Calculate the expected peak overland flow velocity on the final cover, using the above methods, for both Case 1-130-foot Final Cover Sideslope and Case 2-250-foot Final Cover Topslope.

Note: The sideslope length is the greatest spacing between drainage swales on final cover, and the topslope length is the greatest flow length on the final cover topslope.

\section*{CITY OF WACO LANDFILL \\ FINAL COVER \\ OVERLAND FLOW VELOCITY}

\section*{Case 1: 130-foot Final Cover Sideslope:}
1. Determine the time of concentration \(\left(\mathrm{t}_{\mathrm{C}}\right)\) and sheet flow velocity on final cover sideslopes using the Manning's Kinematic Solution.

\section*{Sheet Flow Velocity:}
\begin{tabular}{rcl} 
Sheet Flow Length \(=\) & 100 & ft \\
Slope \(=\) & 0.25 & \(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Sheet Flow Time of Concentration Equation:
\[
\mathrm{t}_{\mathrm{c}}=\frac{0.007(\mathrm{~nL})^{0.8}}{\left(\mathrm{P}_{25,24}\right)^{0.5} \mathrm{~S}^{0.4}}
\]

Where: \(\quad t_{c}=\quad\) sheet flow time of concentration (hr)
\(\mathrm{n}=\quad\) Manning's roughness coefficient
\(\mathrm{L}=\) slope length
\(\mathrm{P}_{25,24}=\) 25-year, 24-hour rainfall depth (in)
\(\mathrm{S}=\quad\) slope \((\mathrm{ft} / \mathrm{ft})\)

Sheet Flow Velocity Equation:
\[
\mathrm{V}=\frac{\mathrm{L}}{60 \mathrm{t}_{\mathrm{c}}}
\]

Where: \(\quad \mathrm{V}=\quad\) sheet flow velocity (fps)
\(t_{c}=\quad\) sheet flow time of concentration (min)
\(\mathrm{L}=\quad\) sheet flow length ( ft )

\section*{Calculate \(\mathrm{t}_{\mathrm{c}}\) :}
\begin{tabular}{rlrl}
n & \(=\) & 0.15 & (See page 6A-E-75, surface roughness for short grass) \\
\(\mathrm{L}=\) & 100 & \\
\(\mathrm{P}_{25,24}=\) & 7.90 & \\
\(\mathrm{~S}=\) & 0.25 & \\
\hline \(\mathrm{t}_{\mathrm{c}}\) & \(=\) & \begin{tabular}{cl}
0.038 & hr \\
2.27 & min \\
&
\end{tabular}
\end{tabular}

\section*{Calculate the sheet flow velocity:}
\begin{tabular}{lll}
\(\mathrm{L}=\) & 100 & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 2.27 & \\
& & \\
\(\mathrm{~V}=\) & 0.73 & fps \\
\hline
\end{tabular}

\section*{CITY OF WACO LANDFILL \\ FINAL COVER OVERLAND FLOW VELOCITY}
2. Determine the shallow concentrated flow velocity on the sideslopes using a derivation of Manning's Equation.

\section*{Shallow Concentrated Flow Velocity:}
\begin{tabular}{rcl} 
Shallow Concentrated Flow Length & \(=\) & 30 \\
Slope \(=\) & 0.25 & ft \\
\(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Rational Method Equation:
\[
\mathrm{Q}=\quad \mathrm{CiA}
\]

Where: \(\quad \mathrm{Q}=\quad\) flow rate (cfs)
\(\mathrm{C}=\quad\) runoff coefficient
\(\mathrm{i}=\quad\) rainfall intensity \((\mathrm{in} / \mathrm{hr})\)
\(\mathrm{A}=\quad\) drainage area \((\mathrm{ac})\) (assume unit width for flow area)
Intensity Equation:
\[
\mathrm{i}=\mathrm{b} /\left(\mathrm{t}_{\mathrm{c}}+\mathrm{d}\right)^{\mathrm{e}}
\]

Where: \(\quad \mathrm{i}=\quad\) rainfall intensity ( \(\mathrm{in} / \mathrm{hr}\) )
\(\mathrm{b}=\) Constant for Limestone County \(\quad=\quad 103.56\)
\(\mathrm{d}=\) Constant for Limestone County \(\quad=\quad 11.0\)
\(\mathrm{e}=\) Constant for Limestone County \(\quad=\quad 0.806\)
\(\mathrm{t}_{\mathrm{c}}=\quad\) time of concentration (min) (noted below)

Time of Concentration Equation:
\(\mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\mathrm{V}} \quad=\quad 0.46 \quad \min\) (see note below)

Note: ( \(\mathrm{t}_{\mathrm{c}}\) is solved through trial and error by manually adjusting the value for the time of concentration until the ratio of length to velocity and \(t_{c}\) to reach the peak flow rate, as calculated using the Rational Method, are equal)

\section*{Calculate peak flow rate for unit width of flow:}
\begin{tabular}{ccll}
\(\mathrm{C}=\) & 0.77 & & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 0.46 & min & (see note above) \\
\(\mathrm{i}=\) & 14.50 & \(\mathrm{in} / \mathrm{hr}\) & \\
\(\mathrm{A}=\) & 0.0007 & ac & (Unit width of flow, \(\mathrm{w}=1 \mathrm{ft}\). \\
& & & Therefore, \(\mathrm{A}=\mathrm{L} / 43560\) )
\end{tabular}
\(\mathrm{Q}=\quad 0.008 \quad \mathrm{cfs}\)

\section*{CITY OF WACO LANDFILL \\ FINAL COVER OVERLAND FLOW VELOCITY}

Calculate approximate depth of flow derived from Manning's Method Equation (see attached derivation, page 6A-E-69):
\[
\begin{array}{lll}
d=\left(\frac{Q n}{1.49 S^{0.5}}\right)^{0.6} \\
\mathrm{Q}= & 0.008 & \text { cfs } \\
\mathrm{n}= & 0.025 & \text { (Manning's } \mathrm{n} \text { for channel flow, conservative) } \\
\mathrm{S}= & 0.25 & \mathrm{ft} / \mathrm{ft} \\
& & \\
\mathrm{~d}= & 0.007 & \mathrm{ft} \\
\end{array}
\]

\section*{Calculate shallow concentrated flow velocity:}
\[
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\mathrm{~d}} \\
& \mathrm{~V}=1.09 \text { fps }
\end{aligned}
\]
3. Compare peak velocity to permissible non-erodible velocity.

\section*{Case 1 Conclusion:}

The peak velocity between drainage swales on the final cover sideslopes is associated with the shallow concentrated flow component of overland flow. The calculated sideslope shallow concentrated flow velocity is less than the permissible non-erodible velocity of \(5.0 \mathrm{ft} / \mathrm{s}\) on final cover, as discussed in Attachment 6A, Subsection 2.2.

\section*{Case 2: 250-foot Final Topslope:}
1. Determine the time of concentration \(\left(\mathrm{t}_{\mathrm{C}}\right)\) and sheet flow velocity on final cover topslopes using the Manning's Kinematic Solution.

\section*{Sheet Flow Velocity:}
\begin{tabular}{rcl} 
Sheet Flow Length \(=\) & 100 & ft \\
Slope \(=\) & 0.05 & \(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Sheet Flow Time of Concentration Equation:
\[
\mathrm{t}_{\mathrm{c}}=\frac{0.007(\mathrm{~nL})^{0.8}}{\left(\mathrm{P}_{25,24}\right)^{0.5} \mathrm{~S}^{0.4}} \text { (as described above) }
\]

\section*{CITY OF WACO LANDFILL \\ FINAL COVER \\ OVERLAND FLOW VELOCITY}

Sheet Flow Velocity Equation:
\[
\mathrm{V}=\frac{\mathrm{L}}{60 \mathrm{t}_{\mathrm{c}}} \text { (as described above) }
\]

Calculate \(\mathbf{t}_{\mathrm{c}}\) :
\begin{tabular}{rcc}
\(\mathrm{n}=\) & 0.15 & (See page 6A-E-75, surface roughness for short grass) \\
\(\mathrm{L}=\) & 100 & \\
\(\mathrm{P}_{25,24}=\) & 7.90 \\
\(\mathrm{~S}=\) & 0.05 \\
\hline \(\mathrm{t}_{\mathrm{c}}\) & \(=\) & \begin{tabular}{cl}
0.072 & hr \\
4.32 & min
\end{tabular} \\
\end{tabular}

Calculate the sheet flow velocity:
\begin{tabular}{ll}
\(\mathrm{L}=\) & 100 \\
\(\mathrm{t}_{\mathrm{c}}=\) & 4.32
\end{tabular}
\(\mathrm{V}=0.39 \quad\) fps
2. Determine the shallow concentrated flow velocity on the topslopes using a derivation of Manning's Equation.

\section*{Shallow Concentrated Flow Velocity:}
\begin{tabular}{rcl} 
Shallow Concentrated Flow Length & \(=\) & 150 \\
Slope & \(=\) & 0.05 \\
\(\mathrm{ft} / \mathrm{ft}\)
\end{tabular}

Rational Method Equation:
\begin{tabular}{cll}
\(\mathrm{Q}=\) & CiA & (as described above) \\
Where: & \(\mathrm{Q}=\) & flow rate (cfs) \\
& \(\mathrm{C}=\) & runoff coefficient \\
\(\mathrm{i}=\) & rainfall intensity (in/hr) \\
\(\mathrm{A}=\) & drainage area (ac) (assume unit width for flow area)
\end{tabular}

Intensity Equation:
\[
\mathrm{i}=\mathrm{b} /\left(\mathrm{t}_{\mathrm{c}}+\mathrm{d}\right)^{\mathrm{e}} \quad \text { (as described above) }
\]

Time of Concentration Equation:
\[
\mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\mathrm{~V}} \quad=\quad 2.11 \quad \min \text { (see note below) }
\]

\section*{CITY OF WACO LANDFILL \\ FINAL COVER OVERLAND FLOW VELOCITY}

Note: ( \(\mathrm{t}_{\mathrm{c}}\) is solved through trial and error by manually adjusting the value for the time of concentration until the ratio of length to velocity and \(t_{c}\) to reach the peak flow rate, as calculated using the Rational Method, are equal)

\section*{Calculate peak flow rate for unit width of flow:}
\begin{tabular}{ccll}
\(\mathrm{C}=\) & 0.7 & & \\
\(\mathrm{t}_{\mathrm{c}}=\) & 2.11 & min & (see note above) \\
\(\mathrm{i}=\) & 13.01 & \(\mathrm{in} / \mathrm{hr}\) & \\
\(\mathrm{A}=\) & 0.0034 & ac & (Unit width of flow, \(\mathrm{w}=1 \mathrm{ft}\). \\
& & & Therefore, \(\mathrm{A}=\mathrm{L} / 43560\) )
\end{tabular}
\(\mathrm{Q}=\quad 0.031 \mathrm{cfs}\)

Calculate approximate depth of flow derived from Manning's Method Equation (see attached derivation, page 6A-E-69):
\[
\begin{array}{rl}
d & =\left(\frac{Q n}{1.49 S^{0.5}}\right)^{0.6} \\
\mathrm{Q} & = \\
\mathrm{n}= & 0.031 \\
\mathrm{~S} & =0.025 \\
0.05 & \mathrm{cfs} \\
\text { (Manning's n for channel flow, conservative) } \\
\mathrm{d} & =0
\end{array}
\]

\section*{Calculate shallow concentrated flow velocity:}
\[
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\mathrm{~d}}
\]
\begin{tabular}{|lll|}
\hline \(\mathrm{V}=\) & 1.18 & fps \\
\hline
\end{tabular}
3. Compare peak velocity to permissible non-erodible velocity.

\section*{Case 2 Conclusion:}

The peak velocity on the final cover topslope is associated with the shallow concentrated flow component of overland flow. The calculated topslope shallow concentrated flow velocity is less than the permissible non-erodible velocity of \(5.0 \mathrm{ft} / \mathrm{s}\) on final cover, as discussed in Attachment 6A, Subsection 2.2.

\section*{DRAINAGE SWALE FLOW ANALYSIS}

\section*{INTERMEDIATE COVER - DRAINAGE SWALE FLOW}

Required: \(\quad\) Calculate the flow velocity and normal depth for sizing drainage swales installed on intermediate cover.

Method:

\section*{CITY OF WACO LANDFILL}

\section*{INTERMEDIATE COVER - DRAINAGE SWALE FLOW ANALYSIS}
1. Determine peak discharge rate associated with the 25 - year, 24 - hour storm event for the swale contributing drainage areas, as shown on Drawings 6A-
E. 3 and 6A-E.4, using the Rational Method (see Subsection 2.2 of Attachment 6A).
2. Determine Mannings " n " and runoff coefficient " C " (see Pages 6A-A-25 and 6A-E-71, respectively).
3. Using the specified channel geometry, evaluate the peak velocity and flow depth using HYDROCALC program.
4. Compare the worst case flow velocity with the permissible velocity of 5 fps .

\section*{Rational Method Calculations for Typical Swale Contributing Areas}
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{2}\)
\end{tabular} & \begin{tabular}{c} 
Runoff Coef. \\
\(\mathbf{C}^{\mathbf{3 , 5}}\)
\end{tabular} & \begin{tabular}{c} 
Rainfall Int. \\
\(\mathbf{I , ( i n / h r )}\)
\end{tabular} & \begin{tabular}{c} 
Area \\
(acres)
\end{tabular} & \begin{tabular}{c} 
Peak \\
Discharge (cfs)
\end{tabular} \\
\hline SW12 & 0.70 & 8.9 & 4.0 & 25.0 \\
\hline SW13 & 0.35 & 8.9 & 2.1 & 6.5 \\
\hline Example-1 & 0.35 & 8.9 & 17.0 & 53.0 \\
\hline SW8 & 0.35 & 8.9 & 6.8 & 21.2 \\
\hline SW11 & 0.70 & 8.9 & 5.2 & 32.7 \\
\hline SW9 & 0.35 & 8.9 & 10.1 & 31.5 \\
\hline SW10 & 0.35 & 8.9 & 2.8 & 8.7 \\
\hline Example-2 & 0.70 & 8.9 & 7.3 & 45.5 \\
\hline Example-3 & 0.70 & 8.9 & 10.0 & 62.3 \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\[
I=\frac{b}{\left(t_{c}+d\right)^{e}}
\]

Where, \(\mathrm{I}=\) Rainfall intensity, in/hr
\begin{tabular}{rc}
\(\mathrm{b}=\) & 103.56 \\
& \\
\(\mathrm{~d}=\) & 11.0 \\
\(\mathrm{e}=\) & 0.806 \\
\(\mathrm{t}_{\mathrm{c}}=\) & 10 min
\end{tabular}
(b, d, e are associated with a 25 - year, 24 - hour storm for Limestome Co., see Page 6A-E-73)

Typical Swale Summary Calculations for Greatest Peak Discharge into a Topslope and Sideslope Swale \({ }^{1}\)
\begin{tabular}{||c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{2}\)
\end{tabular} & \begin{tabular}{c} 
Flow Rate \\
(cfs)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Slope(ft/ft)
\end{tabular} & \begin{tabular}{c} 
Manning's \\
\(\mathbf{n}^{\mathbf{3}}\)
\end{tabular} & \begin{tabular}{c} 
Side Slope \\
(left)
\end{tabular} & \begin{tabular}{c} 
Side Slope \\
(right)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Width (ft)
\end{tabular} & \begin{tabular}{c} 
Normal \\
Depth (ft)
\end{tabular} & \begin{tabular}{c} 
Flow Vel. \\
(fps)
\end{tabular} \\
\hline SW9 & 31.5 & 0.005 & 0.027 & 2 & 20 & 0.0 & 1.06 & \\
\hline Example-1 & 53.0 & 0.005 & 0.027 & 2 & 20 & 0.0 & 1.29 & \\
\hline SW11 & 32.7 & 0.010 & 0.027 & 2 & 4 & 0.88 \\
\hline Example-2 & 45.5 & 0.010 & 0.027 & 2 & 4 & 0 & 1.56 & \\
\hline Example-3 & 62.3 & 0.010 & 0.027 & 2 & 4 & 0.49 & 0.0 & 1.76 \\
\hline
\end{tabular}

Conclusions:

Notes:

From above drainage swale summary calculations, grass-lined topslope swales installed on intermediate cover will have peak velocities less than the permissible velocity of 5 fps . Therefore, topslope swales on installed on intermediate cover will be constructed with a minimum depth of 2.0 feet, provided the contributing area is less than or equal to 17 acres, as shown for Example-1.

Drainage swales installed on the intermediate cover sideslopes may exhibit peak velocities greater than 5 fps if the contributing area is greater than 7.3 acres (see Example 2). Therefore, sideslope swales installed on intermediate cover will be grass-lined and contructed with a minimum depth of 2.4 feet, provided the contributing area is less than or equal to 7.3 acres. Additionally, sideslope swales with contributing areas greater than 7.3 acres but less than 10 acres will be rip rap or TRM-lined and constructed with a minimum depth of 2.6 feet. Drainage swales installed on intermediate cover will be constructed with a minimum 0.5 -foot of freeboard above calculated peak flow depth. See Drawing 6A. 12 for drainage swale details.
2. Contributing drainage areas are depicted on Drawings 6A-E. 3 and 6A-E.4.
3. Refer to Hydraulic Calculation References for Mannings " \(n\) " and runoff coefficient, C, references.
4. Rainfal Intensity (I) calculated for \(\mathrm{tc}=10 \mathrm{~min}\), using equation for rainfall intensity shown above. Refer to Hydraulic Calculation References
for coefficient \(\mathrm{b}, \mathrm{d}\), and e references.

\section*{SW9}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 31.5 \\
\hline Channel Bottom Slope (ft/ft) & 0.005 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 20.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.06 \\
\hline Flow Velocity (fps) & 2.54 \\
\hline Froude Number.. & 0.613 \\
\hline Velocity Head (ft) & 0.1 \\
\hline Energy Head (ft). & 1.16 \\
\hline Cross-Sectional Area of Flow (sq ft) & 12.42 \\
\hline Top Width of Flow (ft). & 23.38 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{EXAMPLE-1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 53.0 \\
\hline Channel Bottom Slope (ft/ft) & 0.005 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 20.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.29 \\
\hline Flow Velocity (fps) & 2.88 \\
\hline Froude Number. & 0.632 \\
\hline Velocity Head (ft) & 0.13 \\
\hline Energy Head (ft) & 1.42 \\
\hline Cross-Sectional Area of Flow (sq ft) & 18.39 \\
\hline Top Width of Flow (ft). & 28.44 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION
\[
\text { July 11, } 2019
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 32.7 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.56 \\
\hline Flow Velocity (fps) & 4.49 \\
\hline Froude Number.. & 0.896 \\
\hline Velocity Head (ft) & 0.31 \\
\hline Energy Head (ft). & 1.87 \\
\hline Cross-Sectional Area of Flow (sq ft) & 7.29 \\
\hline Top Width of Flow (ft)... & 9.35 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{EXAMPLE-2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 45.5 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft).. & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.76 \\
\hline Flow Velocity (fps) & 4.87 \\
\hline Froude Number. & 0.915 \\
\hline Velocity Head (ft) & 0.37 \\
\hline Energy Head (ft). & 2.13 \\
\hline Cross-Sectional Area of Flow (sq ft) & 9.33 \\
\hline Top Width of Flow (ft)... & 10.58 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{EXAMPLE-3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 62.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft).. & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.98 \\
\hline Flow Velocity (fps) & 5.27 \\
\hline Froude Number. & 0.933 \\
\hline Velocity Head (ft) & 0.43 \\
\hline Energy Head (ft) & 2.42 \\
\hline Cross-Sectional Area of Flow (sq ft) & 11.81 \\
\hline Top Width of Flow (ft).. & 11.91 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{FINAL COVER - DRAINAGE SWALE FLOW}

\section*{CITY OF WACO LANDFILL}

Required: Calculate the flow velocity and normal depth for sizing drainage swales installed on final cover.
Method: 1. Determine peak discharge rate associated with the 25-year, 24 - hour storm event for the swale contributing drainage areas, as shown on Drawing 6A-
E.1, using the Rational Method (see Subsection 2.2 of Attachment 6A).
2. Determine Mannings " n " and runoff coefficient " C " (see Pages 6A-A-25 and 6A-E-71, respectively).
3. Using the specified channel geometry, evaluate the peak velocity and flow depth using HYDROCALC program.
4. Compare the worst case flow velocity with the permissible velocity of 5 fps .

Solution:
Rational Method Calculations for Typical Swale Contributing Areas
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{\mathbf{2}}\)
\end{tabular} & \begin{tabular}{c} 
Runoff Coef. \\
\(\mathbf{C}^{\mathbf{3 , 5}}\)
\end{tabular} & \begin{tabular}{c} 
Rainfall Int. \\
\(\mathbf{I},(\mathbf{i n} / \mathbf{h r})^{\mathbf{4}}\)
\end{tabular} & \begin{tabular}{c} 
Area \\
\(\mathbf{( a c r e s ) ~}\)
\end{tabular} & \begin{tabular}{c} 
Peak \\
Discharge (cfs)
\end{tabular} \\
\hline SW1 & 0.70 & 8.9 & 3.7 & 22.8 \\
\hline SW2 & 0.70 & 8.9 & 3.2 & 20.0 \\
\hline SW3 & 0.35 & 8.9 & 2.1 & 6.4 \\
\hline SW4 & 0.70 & 8.9 & 3.0 & 18.7 \\
\hline SW5 & 0.70 & 8.9 & 3.3 & 20.8 \\
\hline SW6 & 0.35 & 8.9 & 2.4 & 7.4 \\
\hline SW7 & 0.70 & 8.9 & 2.1 & 6.4 \\
\hline \hline
\end{tabular}
\[
I=\frac{b}{\left(t_{c}+d\right)^{e}}
\]

Where, \(\mathrm{I}=\) Rainfall intensity, in/hr
\begin{tabular}{rlrl}
b & \(=\) & 103.56 & \\
\(\mathrm{~d}=\) & 11.0 & \\
\(\mathrm{e}=\) & 0.806 & \\
\(\mathrm{t}_{\mathrm{c}}=\) & & 10 min
\end{tabular}
(b, d, e are associated with a 25 - year, 24 - hour storm for Limestone Co., see Page 6A-E-73)
Typical Swale Summary Calculations \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Drainage Area \({ }^{2}\) & Flow Rate (cfs) & \[
\begin{gathered}
\text { Bottom } \\
\text { Slope(ft/ft) }
\end{gathered}
\] & \[
\begin{gathered}
\hline \hline \text { Manning's } \\
\mathbf{n}^{3}
\end{gathered}
\] & Side Slope (left) & \[
\begin{gathered}
\hline \hline \text { Side Slope } \\
\text { (right) }
\end{gathered}
\] & Bottom Width (ft) & \[
\begin{aligned}
& \hline \hline \text { Normal } \\
& \text { Depth (ft) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Flow Vel. } \\
& \text { (fps) }
\end{aligned}
\] \\
\hline SW1 & 22.8 & 0.01 & 0.027 & 2 & 4 & 0.0 & 1.36 & 4.09 \\
\hline SW2 & 20.0 & 0.01 & 0.027 & 2 & 4 & 0.0 & 1.30 & 3.96 \\
\hline SW3 & 6.4 & 0.005 & 0.027 & 2 & 20 & 0.0 & 0.58 & 1.71 \\
\hline SW4 & 18.7 & 0.01 & 0.027 & 2 & 4 & 0.0 & 1.26 & 3.90 \\
\hline SW5 & 20.8 & 0.01 & 0.027 & 2 & 4 & 0.0 & 1.32 & 4.00 \\
\hline SW6 & 7.4 & 0.005 & 0.027 & 2 & 20 & 0.0 & 0.62 & 1.77 \\
\hline SW7 & 6.4 & 0.005 & 0.027 & 2 & 20 & 0.0 & 0.58 & 1.71 \\
\hline
\end{tabular}

Conclusions: \(\quad\) From above drainage swale summary calculations, the greatest calculated flow velocity in a sideslope swale is 4.09 fps and in a topslope swale is 1.77 fps which are both less than the permissible velocity of 5 fps . Therefore, drainage swales installed on the final cover topslope and sideslope will be constructed with a minimum depth of 2.1 and 2.5 feet, respectively. Drainage swales will be constructed with a minimum 1-foot of freeboard above calculated peak flow depth. See Drawing 6A. 19 for drainage swale details.

Notes:
1. Calculations were performed using the HYDROCALC program developed by Dodson and Associates (Version 1.3, 1986).
2. Contributing drainage areas are depicted on Drawing 6A-E.1.
3. Refer to Hydraulic Calculation References for Mannings " \(n\) " and runoff coefficient, C , references.
4. Rainfal Intensity (I) calculated for \(\mathrm{tc}=10 \mathrm{~min}\), using equation for rainfall intensity shown above. Refer to Hydraulic Calculation References for coefficient \(\mathrm{b}, \mathrm{d}\), and e references.

\section*{SW1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 22.8 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.36 \\
\hline Flow Velocity (fps) & 4.09 \\
\hline Froude Number. & 0.874 \\
\hline Velocity Head (ft) & 0.26 \\
\hline Energy Head (ft) & 1.62 \\
\hline Cross-Sectional Area of Flow (sq ft) & 5.57 \\
\hline Top Width of Flow (ft) & 8.18 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{SW2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 20.0 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft).. & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.3 \\
\hline Flow Velocity (fps) & 3.96 \\
\hline Froude Number. & 0.867 \\
\hline Velocity Head (ft) & 0.24 \\
\hline Energy Head (ft). & 1.54 \\
\hline Cross-Sectional Area of Flow (sq ft) & 5.05 \\
\hline Top Width of Flow (ft)... & 7.78 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{SW3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 6.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.005 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 20.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.58 \\
\hline Flow Velocity (fps) & 1.71 \\
\hline Froude Number.. & 0.556 \\
\hline Velocity Head (ft) & 0.05 \\
\hline Energy Head (ft) & 0.63 \\
\hline Cross-Sectional Area of Flow (sq ft) & 3.75 \\
\hline Top Width of Flow (ft). & 12.85 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 18.7 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.26 \\
\hline Flow Velocity (fps) & 3.9 \\
\hline Froude Number. & 0.863 \\
\hline Velocity Head (ft) & 0.24 \\
\hline Energy Head (ft)..... & 1.5 \\
\hline Cross-Sectional Area of Flow (sq ft) & 4.8 \\
\hline Top Width of Flow (ft)... & 7.59 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{SW5}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 20.8 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 4.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.32 \\
\hline Flow Velocity (fps) & 4.0 \\
\hline Froude Number. & 0.869 \\
\hline Velocity Head (ft) & 0.25 \\
\hline Energy Head (ft)..... & 1.57 \\
\hline Cross-Sectional Area of Flow (sq ft) & 5.2 \\
\hline Top Width of Flow (ft)... & 7.9 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SW6} \\
\hline \multicolumn{2}{|l|}{TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION} \\
\hline \multicolumn{2}{|l|}{July 11, 2019} \\
\hline PROGRAM INPUT DATA & \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 7.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.005 \\
\hline Manning's Roughness Coefficient ( n -value) . & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical). & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 20.0 \\
\hline Channel Bottom Width (ft). & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.62 \\
\hline Flow Velocity (fps) & 1.77 \\
\hline Froude Number..... & 0.561 \\
\hline Velocity Head (ft) & 0.05 \\
\hline Energy Head (ft).. & 0.67 \\
\hline Cross-Sectional Area of Flow (sq ft) & 4.19 \\
\hline Top Width of Flow (ft)......... & 13.57 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{SW7}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 6.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.005 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 20.0 \\
\hline Channel Bottom Width (ft).. & 0.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.58 \\
\hline Flow Velocity (fps) & 1.71 \\
\hline Froude Number. & 0.556 \\
\hline Velocity Head (ft) & 0.05 \\
\hline Energy Head (ft). & 0.63 \\
\hline Cross-Sectional Area of Flow (sq ft) & 3.75 \\
\hline Top Width of Flow (ft)........ & 12.85 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{DOWNCHUTE FLOW ANALYSIS}

\section*{INTERMEDIATE COVER - DOWNCHUTE FLOW}

\section*{CITY OF WACO LANDFILL}

\section*{INTERMEDIATE COVER - DOWNCHUTE FLOW ANALYSIS}

\section*{Required: \\ Calculate the peak flow depth for sizing downchutes installed on intermediate cover.}

Method: 1. Determine peak discharge rate associated with the 25-year, 24 - hour storm event for downchute contributing drainage areas using the Rational Method (see Subsection 2.2 of Attachment 6A).
2. Determine Mannings " n " and runoff coefficient "C" (see Page 6A-A-25 and 6A-E-71, respectively).
3. Using the specified channel geometry, evaluate the peak velocity and flow depth using HYDROCALC program.

\section*{Rational Method Calculations for Typical Swale Contributing Areas}
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{\mathbf{2}}\)
\end{tabular} & \begin{tabular}{c} 
Runoff Coef. \\
\(\mathbf{C}^{\mathbf{3 , 5}}\)
\end{tabular} & \begin{tabular}{c} 
Rainfall Int. \\
\(\mathbf{I}, \mathbf{( i n / h r})^{\mathbf{4}}\)
\end{tabular} & \begin{tabular}{c} 
Area \\
(acres)
\end{tabular} & \begin{tabular}{c} 
Peak \\
Discharge (cfs)
\end{tabular} \\
\hline DC3 & 0.70 & 8.9 & 9.0 & 56.2 \\
\hline DC4 & 0.70 & 8.9 & 10.5 & 65.2 \\
\hline Example DC & 0.70 & 8.9 & 35.0 & 218.1 \\
\hline
\end{tabular}
\[
I=\frac{b}{\left(t_{c}+d\right)^{e}}
\]

Where, \(\mathrm{I}=\) Rainfall intensity, in/hr
\begin{tabular}{rl}
\(\mathrm{b}=\) & 103.56 \\
\(\mathrm{~d}=\) & 11.0 \\
\(\mathrm{e}=\) & 0.806 \\
\(\mathrm{t}_{\mathrm{c}}=\) & 10 min
\end{tabular}
(b, d, e are associated with a 25 - year, 24 - hour storm for Limestone Co., see Page 6A-E-73)

\section*{Typical Swale Summary Calculations}
\begin{tabular}{||c|c|c|c|c|c|c|c|c||}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{2}\)
\end{tabular} & \begin{tabular}{c} 
Flow Rate \\
(cfs)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Slope(ft/ft)
\end{tabular} & \begin{tabular}{c} 
Manning's \\
\(\mathbf{n}^{\mathbf{3}}\)
\end{tabular} & \begin{tabular}{c} 
Sideslope \\
(left)
\end{tabular} & \begin{tabular}{c} 
Sideslope \\
(right)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Width (ft)
\end{tabular} & \begin{tabular}{c} 
Normal \\
Depth (ft)
\end{tabular} & \begin{tabular}{c} 
Flow Vel. \\
(fps)
\end{tabular} \\
\hline DC3 & 56.2 & 0.25 & 0.033 & 2 & 2 & 10.0 & 0.43 & 12.05 \\
\hline DC4 & 65.2 & 0.25 & 0.033 & 2 & 2 & 10.0 & 0.47 & 12.17 \\
\hline Example DC & 218.1 & 0.25 & 0.033 & 2 & 2 & 10.0 & 0.95 & 19.31 \\
\hline
\end{tabular}

Notes:

> Based on the greatest contributing drainage area shown on Drawing 6A-E.5, downchutes installed on intermediate cover will be constructed 2 feet deep (assuming 1-foot of freeboard), with a 10-foot bottom width, and 2H:1V sideslopes. Gabions, rip rap, or dissipation blocks will be installed at the toe of the landfill berm with the perimeter channels to dissipate the peak velocity. Typcial details for downchutes are depcited on Drawing 6A.20.
1. Calculations were performed using the HYDROCALC program developed by Dodson and Associates (Version 1.3, 1986).
2. Contributing drainage areas are depicted on Drawing 6A-E.5.
3. Refer to Hydraulic Calculation References for Mannings " n " and runoff coefficient, C , references.
4. Rainfal Intensity (I) calculated for \(\mathrm{tc}=10 \mathrm{~min}\), using equation for rainfall intensity shown above. Refer to Hydraulic Calculation References
for coefficient \(\mathrm{b}, \mathrm{d}\), and e references.

\section*{DC3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 56.2 \\
\hline Channel Bottom Slope (ft/ft) & 0.25 \\
\hline Manning's Roughness Coefficient (n-value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.43 \\
\hline Flow Velocity (fps) & 12.05 \\
\hline Froude Number. & 3.367 \\
\hline Velocity Head (ft) & 2.26 \\
\hline Energy Head (ft).. & 2.69 \\
\hline Cross-Sectional Area of Flow (sq ft) & 4.66 \\
\hline Top Width of Flow (ft)............ & 11.72 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{DC4}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION
\[
\text { July 11, } 2019
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 65.2 \\
\hline Channel Bottom Slope (ft/ft) & 0.25 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.47 \\
\hline Flow Velocity (fps) & 12.71 \\
\hline Froude Number.. & 3.41 \\
\hline Velocity Head (ft) & 2.51 \\
\hline Energy Head (ft) & 2.98 \\
\hline Cross-Sectional Area of Flow (sq ft) & 5.13 \\
\hline Top Width of Flow (ft). & 11.88 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{FINAL COVER - DOWNCHUTE FLOW}

\section*{CITY OF WACO LANDFILL}

FINAL COVER - DOWNCHUTE FLOW ANALYSIS

\section*{Required:}

Method: 1. Determine peak discharge rate associated with the \(25-\) year, 24 - hour storm event for downchute contributing drainage areas using the Rational Method (see Subsection 2.2 of Attachment 6A).
2. Determine Mannings " n " and runoff coefficient " C " (see Page 6A-A-25 and 6A-E-71, respectively).
3. Using the specified channel geometry, evaluate the peak velocity and flow depth using HYDROCALC program.

\section*{Rational Method Calculations for Typical Swale Contributing Areas}
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Drainage \\
Area \(^{\mathbf{2}}\)
\end{tabular} & \begin{tabular}{c} 
Runoff Coef. \\
\(\mathbf{C}^{\mathbf{3 , 5}}\)
\end{tabular} & \begin{tabular}{c} 
Rainfall Int. \\
\(\mathbf{I},(\mathbf{i n} / \mathbf{h r})^{4}\)
\end{tabular} & \begin{tabular}{c} 
Area \\
(acres)
\end{tabular} & \begin{tabular}{c} 
Peak \\
Discharge (cfs)
\end{tabular} \\
\hline DC 1 & 0.70 & 8.9 & 21.7 & 135.2 \\
\hline DC 2 & 0.70 & 8.9 & 15.1 & 93.8 \\
\hline
\end{tabular}
\[
I=\frac{b}{\left(t_{c}+d\right)^{e}}
\]

Where, \(\mathrm{I}=\) Rainfall intensity, in/hr
\begin{tabular}{cc}
\(\mathrm{b}=\) & 103.56 \\
\(\mathrm{~d}=\) & 11.0 \\
\(\mathrm{e}=\) & 0.806 \\
\(\mathrm{t}_{\mathrm{c}}=\) &
\end{tabular}

10 min
(b, d, e are associated with a 25 - year, 24 - hour storm for Limestone Co., see Page 6A-E-73)

\section*{Typical Swale Summary Calculations \({ }^{1}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c||}
\hline \hline \begin{tabular}{c} 
Drainage \\
Area \(^{2}\)
\end{tabular} & \begin{tabular}{c} 
Flow Rate \\
(cfs)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Sope(ft/ft)
\end{tabular} & \begin{tabular}{c} 
Manning's \\
\(\mathbf{n}^{\mathbf{3}}\)
\end{tabular} & \begin{tabular}{c} 
Sideslope \\
(left)
\end{tabular} & \begin{tabular}{c} 
Sideslope \\
(right)
\end{tabular} & \begin{tabular}{c} 
Bottom \\
Width (ft)
\end{tabular} & \begin{tabular}{c} 
Normal \\
Depth (ft)
\end{tabular} & \begin{tabular}{c} 
Flow Vel. \\
(fps)
\end{tabular} \\
\hline DC 1 & 135.2 & 0.25 & 0.033 & 2 & 2 & 15.0 & 0.57 & \\
\hline DC 2 & 93.8 & 0.25 & 0.033 & 2 & 2 & 15.0 & 0.46 & 12.68 \\
\hline
\end{tabular}

Conclusions: \(\quad\) Based on the greatest contributing drainage areas shown on Drawing 6A-E.2, downchutes installed on final cover will be constructed 2 feet deep (assuming 1-foot of freeboard), with a 15 -foot bottom width, and \(2 \mathrm{H}: 1 \mathrm{~V}\) sideslopes. Gabions, rip rap, or dissipation blocks will be installed at the toe of the landfill berm with the perimeter channels to dissipate the peak velocity. Typcial details for downchutes are depcited on Drawing 6A.20.

Notes:
1. Calculations were performed using the HYDROCALC program developed by Dodson and Associates (Version 1.3, 1986).
2. Contributing drainage areas are depicted on Drawing 6A-E.2.
3. Refer to Hydraulic Calculation References for Mannings " n " and runoff coefficient, C, references.
4. Rainfal Intensity (I) calculated for \(\mathrm{tc}=10 \mathrm{~min}\), using equation for rainfall intensity shown above. Refer to Hydraulic Calculation References
for coefficient \(\mathrm{b}, \mathrm{d}\), and e references.

\section*{DC1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 135.2 \\
\hline Channel Bottom Slope (ft/ft) & 0.25 \\
\hline Manning's Roughness Coefficient (n-value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Bottom Width (ft). & 15.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.57 \\
\hline Flow Velocity (fps) & 14.68 \\
\hline Froude Number. & 3.546 \\
\hline Velocity Head (ft) & 3.35 \\
\hline Energy Head (ft). & 3.92 \\
\hline Cross-Sectional Area of Flow (sq ft) & 9.21 \\
\hline Top Width of Flow (ft)....... & 17.28 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{DC2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

July 11, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 93.8 \\
\hline Channel Bottom Slope (ft/ft) & 0.25 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 2.0 \\
\hline Channel Bottom Width (ft).. & 15.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.46 \\
\hline Flow Velocity (fps) & 12.82 \\
\hline Froude Number. & 3.427 \\
\hline Velocity Head (ft) & 2.55 \\
\hline Energy Head (ft). & 3.01 \\
\hline Cross-Sectional Area of Flow (sq ft) & 7.32 \\
\hline Top Width of Flow (ft)........ & 16.84 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{PERIMETER CHANNEL FLOW ANALYSIS (HYDROCALC OUTPUT FILES)}

\section*{CHANNEL-1A1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 11.0 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 5.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.54 \\
\hline Flow Velocity (fps) & 3.1 \\
\hline Froude Number & 0.832 \\
\hline Velocity Head (ft) & 0.15 \\
\hline Energy Head (ft) & 0.69 \\
\hline Cross-Sectional Area of Flow (sq ft) & 3.55 \\
\hline Top Width of Flow (ft) & 8.22 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-1A2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 11.0 \\
\hline Channel Bottom Slope (ft/ft) & 0.008 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 5.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.57 \\
\hline Flow Velocity (fps) & 2.87 \\
\hline Froude Number & 0.75 \\
\hline Velocity Head (ft) & 0.13 \\
\hline Energy Head (ft) & 0.7 \\
\hline Cross-Sectional Area of Flow (sq ft) & 3.83 \\
\hline Top Width of Flow (ft) & 8.43 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-1A3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 159.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 2.41 \\
\hline Flow Velocity (fps) & 3.83 \\
\hline Froude Number & 0.519 \\
\hline Velocity Head (ft) & 0.23 \\
\hline Energy Head (ft) & 2.64 \\
\hline Cross-Sectional Area of Flow (sq ft) & 41.54 \\
\hline Top Width of Flow (ft) & 24.46 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-1A4}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 159.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.022 \\
\hline Manning's Roughness Coefficient (n-value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}


Froude Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Energy Head (ft) . . . . . . . . . . . . . . . . ........................ 2.33
Cross-Sectional Area of Flow (sq ft) .............................................................. 22.05


HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-2A1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline DESCRIPTION PROGRAM INPUT DATA & VALUE \\
\hline Flow Rate (cfs) & 109.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.0225 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.23 \\
\hline Flow Velocity (fps) & 6.51 \\
\hline Froude Number & 1.166 \\
\hline Velocity Head (ft) & 0.66 \\
\hline Energy Head (ft) & 1.89 \\
\hline Cross-Sectional Area of Flow (sq ft) & 16.8 \\
\hline Top Width of Flow (ft) & 17.37 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-2A2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 109.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.007 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}
Normal Depth (ft) ...................................................... 1.51
Flow Velocity (fps).................................................. 4.97
Froude Number............................................................ 0.817
Velocity Head (ft)......................................................... 0.38
Energy Head (ft) ........................................................... 1.9
Cross-Sectional Area of Flow (sq ft)................................. 21.97
Top Width of Flow (ft)...................................................... 19.07

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-2A3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 109.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.0225 \\
\hline Manning's Roughness Coefficient (n-value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}


Froude Number............................................... 1.166





HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-2A4}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 109.3 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline
\end{tabular}

Normal Depth (ft)...................................................... 1.99

Flow Velocity (fps)................................................... 3.45
Froude Number......................................................... 0.506
Velocity Head (ft).................................................... 0.18
Energy Head (ft)....................................................... 2.17
Cross-Sectional Area of Flow (sq ft)............................................. 31.68
Top Width of Flow (ft) ........................................................... 21.91

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-2A5}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 253.7 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}


Froude Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.535





HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-3A1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 125.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 2.13 \\
\hline Flow Velocity (fps) & 3.59 \\
\hline Froude Number & 0.511 \\
\hline Velocity Head (ft) & 0.2 \\
\hline Energy Head (ft) & 2.33 \\
\hline Cross-Sectional Area of Flow (sq ft) & 34.96 \\
\hline Top Width of Flow (ft) & 22.79 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4A1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline DESCRIPTION PROGRAM INPUT DATA & VALUE \\
\hline Flow Rate (cfs) & 13.9 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 5.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.89 \\
\hline Flow Velocity (fps) & 2.05 \\
\hline Froude Number & 0.444 \\
\hline Velocity Head (ft) & 0.07 \\
\hline Energy Head (ft) & 0.95 \\
\hline Cross-Sectional Area of Flow (sq ft) & 6.8 \\
\hline Top Width of Flow (ft) & 10.32 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4A2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 13.9 \\
\hline Channel Bottom Slope (ft/ft) & 0.03 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 5.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 0.45 \\
\hline Flow Velocity (fps) & 4.87 \\
\hline Froude Number & 1.408 \\
\hline Velocity Head (ft) & 0.37 \\
\hline Energy Head (ft) & 0.82 \\
\hline Cross-Sectional Area of Flow (sq ft) & 2.86 \\
\hline Top Width of Flow (ft) ....... & 7.7 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4A3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|c|}
\hline & PROGRAM INPUT DATA & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Flow Rate (cfs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . & 93.0 \\
Channel Bottom Slope (ft/ft) . . . . . . . . . . . . . . . . . . . . . . . . & 0.015
\end{tabular}
Manning's Roughness Coefficient (n-value)..................... 0.033

Channel Left Side Slope (horizontal/vertical)............... 3.0
Channel Right Side Slope (horizontal/vertical)............. 3.0
Channel Bottom Width (ft)...................................... 10.0
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}


Froude Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.955


Cross-Sectional Area of Flow (sq ft) ....................................................... 17.


HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4A4}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|c|}
\hline & PROGRAM INPUT DATA & \\
\hline DESCRIPTION & & VALU \\
\hline
\end{tabular}

Manning's Roughness Coefficient (n-value)....................... 0.027
Channel Left Side Slope (horizontal/vertical).................. 3.0
Channel Right Side Slope (horizontal/vertical)................. 3.0

Channel Bottom Width (ft)........................................ 10.0
\(==================================================================================\)
COMPUTATION RESULTS
DESCRIPTION

Normal Depth (ft).................................................... 1.44
Flow Velocity (fps).................................................. 4.49
Froude Number............................................................ 0.752
Velocity Head (ft)..................................................... 0.31
Energy Head (ft)........................................................... 1.76
Cross-Sectional Area of Flow (sq ft)........................................... 20.71
Top Width of Flow (ft).......................................................... 18.67

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4A5}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|c|}
\hline & PROGRAM INPUT DATA & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}
Flow Rate (cfs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


Manning's Roughness Coefficient (n-value)..................... 0.027
Channel Left Side Slope (horizontal/vertical)............... 3.0
Channel Right Side Slope (horizontal/vertical)............. 3.0
Channel Bottom Width (ft)................................................. 10.0
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{COMPUTATION RESULTS} \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}
(f) . . . . . . . . . . . . . . . . . . . . . .

Normal Depth (ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.82




Cross-Sectional Area of Flow (sq ft) ....................................................... 28


HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B1}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|c|}
\hline & PROGRAM INPUT DATA & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}

Manning's Roughness Coefficient (n-value)........................ 0.027

Channel Left Side Slope (horizontal/vertical).................. 3.0
Channel Right Side Slope (horizontal/vertical)................. 3.0
Channel Bottom Width (ft)........................................ 5.0
\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}

Normal Depth (ft)....................................................... 0.58
Flow Velocity (fps)................................................... 2.5
Froude Number......................................................... 0.651
Velocity Head (ft)................................................... 0.1

Cross-Sectional Area of Flow (sq ft)............................................... 38
Top Width of Flow (ft).............................................. 8. 86

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B2}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|c|}
\hline & PROGRAM INPUT DATA & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}


Manning's Roughness Coefficient (n-value)..................... 0.027
Channel Left Side Slope (horizontal/vertical)............... 3.0
Channel Right Side Slope (horizontal/vertical)............. 3.0

\begin{tabular}{|c|c|c|}
\hline & COMPUTATION RESULTS & \\
\hline DESCRIPTION & & VALUE \\
\hline
\end{tabular}

Normal Depth (ft) ......................................... \(0 .{ }^{4} 42\)







HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B3}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 71.6 \\
\hline Channel Bottom Slope (ft/ft) & 0.007 \\
\hline Manning's Roughness Coefficient (n-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft). & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.2 \\
\hline Flow Velocity (fps) & 4.38 \\
\hline Froude Number & 0.793 \\
\hline Velocity Head (ft) & 0.3 \\
\hline Energy Head (ft) & 1.5 \\
\hline Cross-Sectional Area of Flow (sq ft) & 16.34 \\
\hline Top Width of Flow (ft) & 17.21 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B4}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline DESCRIPTION PROGRAM INPUT DATA & VALUE \\
\hline Flow Rate (cfs) & 71.6 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & COMPUTATION RESULTS & & \\
\hline DESCRIPTION & & VALUE & value \\
\hline
\end{tabular}

Normal Depth (ft)........................................................ 1.09
Flow Velocity (fps).................................................. 4.95
Froude Number............................................................ 0.934
Velocity Head (ft)..................................................... 0.38
Energy Head (ft)...................................................... 1.47
Cross-Sectional Area of Flow (sq ft).................................................. 14.45
Top Width of Flow (ft) ............................................................... 16.5

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010
Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B5}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 26, 2019} \\
\hline PROGRAM INPUT DATA & \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 71.6 \\
\hline Channel Bottom Slope (ft/ft) & 0.0065 \\
\hline Manning's Roughness Coefficient ( \(n\)-value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 1.23 \\
\hline Flow Velocity (fps) & 4.27 \\
\hline Froude Number. & 0.766 \\
\hline Velocity Head (ft) & 0.28 \\
\hline Energy Head (ft) & 1.51 \\
\hline Cross-Sectional Area of Flow (sq ft) & 16.77 \\
\hline Top Width of Flow (ft) & 17.36 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B6}
TRAPEZOIDAL CHANNEL ANALYSIS
NORMAL DEPTH COMPUTATION
September \(26, ~ 2019\)

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B7}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 215.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.01 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.033 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 10.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 2.19 \\
\hline Flow Velocity (fps) & 5.95 \\
\hline Froude Number.. & 0.838 \\
\hline Velocity Head (ft) & 0.55 \\
\hline Energy Head (ft) & 2.74 \\
\hline Cross-Sectional Area of Flow (sq ft) & 36.2 \\
\hline Top Width of Flow (ft) & 23.12 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{CHANNEL-4B8}

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

September 26, 2019
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAM INPUT DATA} \\
\hline DESCRIPTION & VALUE \\
\hline Flow Rate (cfs) & 215.4 \\
\hline Channel Bottom Slope (ft/ft) & 0.0025 \\
\hline Manning's Roughness Coefficient ( n -value) & 0.027 \\
\hline Channel Left Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Right Side Slope (horizontal/vertical) & 3.0 \\
\hline Channel Bottom Width (ft) & 11.0 \\
\hline COMPUTATION RESULTS & \\
\hline DESCRIPTION & VALUE \\
\hline Normal Depth (ft) & 2.72 \\
\hline Flow Velocity (fps) & 4.14 \\
\hline Froude Number & 0.529 \\
\hline Velocity Head (ft) & 0.27 \\
\hline Energy Head (ft) & 2.98 \\
\hline Cross-Sectional Area of Flow (sq ft) & 52.02 \\
\hline Top Width of Flow (ft) & 27.3 \\
\hline
\end{tabular}

HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright(c) 1996-2010 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com, All Rights Reserved.

\section*{HYDRAULIC ANALYSIS REFERENCES}

\section*{Hydraulic Design Manual}


Revised July 2016
© 2016 by Texas Department of Transportation
(512) 463-8630 all rights reserved

\section*{Procedure for using the Rational Method}

The rational formula estimates the peak rate of runoff at a specific location in a watershed as a function of the drainage area, runoff coefficient, and mean rainfall intensity for a duration equal to the time of concentration. The rational formula is:
\(\mathrm{Q}=\frac{\mathrm{CIA}}{\mathrm{Z}}\)
Equation 4-20.
Where:
\(Q=\) maximum rate of runoff (cfs or \(\mathrm{m}^{3} / \mathrm{sec}\).)
\(C=\) runoff coefficient
\(I=\) average rainfall intensity (in./hr. or mm/hr.)
\(A=\) drainage area (ac or ha)
\(Z=\) conversion factor, 1 for English, 360 for metric

\section*{Rainfall Intensity}

The rainfall intensity (I) is the average rainfall rate in in./hr. for a specific rainfall duration and a selected frequency. The duration is assumed to be equal to the time of concentration. For drainage areas in Texas, you may compute the rainfall intensity using Equation 4-21, which is known as a rainfall intensity-dura-tion-frequency (IDF) relationship (power-law model).
\(I=\frac{b}{\left(t_{c}+d\right)^{e}}\)

\section*{Equation 4-21.}

\section*{Where:}

I = design rainfall intensity (in./hr.)
tc \(=\) time of concentration (min) as discussed in Section 11
e, b, d = coefficients for specific frequencies listed by county in the EBDLKUP-2015v2.1.xlsx spreadsheet lookup tool (developed by Cleveland et al. 2015). These coefficients are based on rainfall frequency-duration data contained in the Atlas of Depth-Duration Frequency (DDF) of Precipitation of Annual Maxima for Texas (TxDOT 5-1301-01-1). Also see video/tutorial on the use of the EBDLKUP2015v2.1.xlsx spreadsheet tool.

Table 4-10: Runoff Coefficients for Urban Watersheds
\begin{tabular}{|c|c|}
\hline Type of drainage area & Runoff coefficient \\
\hline \multicolumn{2}{|l|}{Business:} \\
\hline Downtown areas & 0.70-0.95 \\
\hline Neighborhood areas & 0.30-0.70 \\
\hline \multicolumn{2}{|l|}{Residential:} \\
\hline Single-family areas & 0.30-0.50 \\
\hline Multi-units, detached & 0.40-0.60 \\
\hline Multi-units, attached & 0.60-0.75 \\
\hline Suburban & 0.35-0.40 \\
\hline Apartment dwelling areas & 0.30-0.70 \\
\hline \multicolumn{2}{|l|}{Industrial:} \\
\hline Light areas & 0.30-0.80 \\
\hline Heavy areas & 0.60-0.90 \\
\hline Parks, cemeteries & 0.10-0.25 \\
\hline Playgrounds & 0.30-0.40 \\
\hline Railroad yards & 0.30-0.40 \\
\hline \multicolumn{2}{|l|}{Unimproved areas:} \\
\hline Sand or sandy loam soil, 0-3\% & 0.15-0.20 \\
\hline Sand or sandy loam soil, 3-5\% & 0.20-0.25 \\
\hline Black or loessial soil, 0-3\% & 0.18-0.25 \\
\hline Black or loessial soil, 3-5\% & 0.25-0.30 \\
\hline Black or loessial soil, > 5\% & 0.70-0.80 \\
\hline Deep sand area & 0.05-0.15 \\
\hline Steep grassed slopes & 0.70 \\
\hline Lawns: & \\
\hline Sandy soil, flat 2\% & 0.05-0.10 \\
\hline Sandy soil, average 2-7\% & 0.10-0.15 \\
\hline Sandy soil, steep 7\% & 0.15-0.20 \\
\hline Heavy soil, flat 2\% & 0.13-0.17 \\
\hline Heavy soil, average 2-7\% & 0.18-0.22 \\
\hline
\end{tabular}

Table 4-10: Runoff Coefficients for Urban Watersheds
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Type of drainage area } & \multicolumn{2}{|c|}{ Runoff coefficient } \\
\hline \hline Heavy soil, steep 7\% & & \(0.25-0.35\) \\
\hline Streets: & & \\
\hline Asphaltic & \(0.85-0.95\) \\
\hline Concrete & \(0.90-0.95\) \\
\hline Brick & \(0.70-0.85\) \\
\hline Drives and walks & \(0.75-0.95\) \\
\hline Roofs & \(0.75-0.95\) \\
\hline
\end{tabular}

\section*{Rural and Mixed-Use Watershed}

Table 4-11 shows an alternate, systematic approach for developing the runoff coefficient. This table applies to rural watersheds only, addressing the watershed as a series of aspects. For each of four aspects, the designer makes a systematic assignment of a runoff coefficient "component." Using Equation 4-22, the four assigned components are added to form an overall runoff coefficient for the specific watershed segment.

The runoff coefficient for rural watersheds is given by:
\(C=C_{r}+C_{i}+C_{v}+C_{s}\)
Equation 4-22.

\section*{Where:}
\(C=\) runoff coefficient for rural watershed
\(C_{r}=\) component of coefficient accounting for watershed relief
\(C_{i}=\) component of coefficient accounting for soil infiltration
\(C_{V}=\) component of coefficient accounting for vegetal cover
\(C_{s}=\) component of coefficient accounting for surface type
The designer selects the most appropriate values for \(C_{r}, C_{i}, C_{v}\), and \(C_{s}\) from Table 4-11.

Sideslopes: \(\mathrm{C}=0.7\)
Topslopes: \(\mathrm{C}=0.35\)

\section*{Rainfall Intensity-Duration-Frequency Coefficients for Texas}

\section*{Based on United States Geological Survey (USGS) Scientific Investigations Report 2004-5041 \\ "Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas"}
1. Select English or SI Units



United States Department of Agriculture

\section*{Natural}

Resources Conservation Service

Conservation Engineering

\section*{Urban Hydrology for Small Watersheds}

\section*{TR-55}

Technical
Release 55
June 1986

To show bookmarks which navigate through the document.
Click the show/hide navigation pane button 唁, and then click the bookmarks tab. It will navigate you to the contents, chapters, rainfall maps, and printable forms.

\section*{Chapter 3}

Time of Concentration and Travel Time
Technical Release 55
Urban Hydrology for Small Watersheds

\section*{Sheet flow}

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's \(n\) ) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These \(n\) values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1 Roughness coefficients (Manning's \(n\) ) for sheet flow
\begin{tabular}{|c|c|}
\hline Surface description & n \(1 /\) \\
\hline Smooth surfaces (concrete, asphalt, gravel, or bare soil) \(\qquad\) & 0.011 \\
\hline Fallow (no residue) & 0.05 \\
\hline Cultivated soils: & \\
\hline Residue cover \(\leq 20 \%\) & 0.06 \\
\hline Residue cover > \(20 \%\) & 0.17 \\
\hline Grass: & \\
\hline Short grass prairie ....................................... & 0.15 \\
\hline Dense grasses \({ }^{\underline{2} /}\) & 0.24 \\
\hline Bermudagrass & 0.41 \\
\hline Range (natural) & 0.13 \\
\hline Woods:3/ & \\
\hline Light underbrush . & 0.40 \\
\hline Dense underbrush ....................................... & 0.80 \\
\hline \multicolumn{2}{|l|}{The n values are a composite of information compiled by Engman (1986).} \\
\hline \multicolumn{2}{|l|}{2 Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.} \\
\hline 3 When selecting \(n\), consider cover to a height of about is the only part of the plant cover that will obstruct she & ft . This flow. \\
\hline
\end{tabular}

\footnotetext{
Final Cover: \(\mathrm{n}=0.15\)
Intermediate Cover: \(\mathrm{n}=0.09\) ( \(60 \%\) of the full surface roughness coefficient for short grass is used)
}

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute \(\mathrm{T}_{\mathrm{t}}\) :
\[
\begin{equation*}
\mathrm{T}_{\mathrm{t}}=\frac{0.007(\mathrm{~nL})^{0.8}}{\left(\mathrm{P}_{2}\right)^{0.5} \mathrm{~s}^{0.4}} \tag{eq.3-3}
\end{equation*}
\]
where:
\[
\begin{aligned}
\mathrm{T}_{\mathrm{t}}= & \text { travel time }(\mathrm{hr}), \\
\mathrm{n} & =\text { Manning's roughness coefficient (table 3-1) } \\
\mathrm{L} & =\text { flow length (ft) } \\
\mathrm{P}_{2}= & \text { 2-year, 24-hour rainfall (in) } \\
\mathrm{S}= & \text { slope of hydraulic grade line } \\
& \quad \text { (land slope, } \mathrm{ft} / \mathrm{ft} \text { ) }
\end{aligned}
\]

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix \(B\).

\section*{Shallow concentrated flow}

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 \(\mathrm{ft} / \mathrm{ft}\), use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

\section*{Open channels}

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation.

\title{
Design Hydrology and Sedimentology for Small Catchments
}

\author{
C. T. Haan \\ Biosystems and Agricultural Engineering Department Oklahoma State University \\ Stillwater, Oklahoma
}

\section*{B. J. Barfield}

Biosystems and Agricultural Engineering Department Oklahoma State University
Stillwater, Oklahoma

\section*{J. C. Hayes}

Agricultural and Biological Engineering Department
Clemson University
Clemson, South Carolina


Academic Press
An Imprint of Elsevier
Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo
where the value of \(I\) is
\begin{tabular}{cc}
\hline Retardance & \(I\) \\
\hline A & 10,000 \\
B & 7.643 \\
C & 5.601 \\
D & 4.436 \\
E & 2.876 \\
\hline
\end{tabular}

This relationship can be used in computer programs to make hydraulic computations for vegetated waterways. The relationships should not be used outside the range of the curves shown in Fig. 4.14.

The graphs of Fig. 4.15 are solutions to Manning's equation using the curves in Fig. 4.14. They can be used as a design aid for solving Manning's equation for all retardance classes.

\section*{Example Problem 4.11 Vegetated channel 1}

Design a channel to carry 25 cfs on a \(4 \%\) slope. Use a parabolic channel. The soil is easily eroded, and the grass may be mowed to 2.5 in . or it may be uncut.

Solution: Select Bermuda grass. Bermuda grass is in retardance \(B\) if unmowed and retardance \(D\) if mowed. The permissible velocity is selected from Table 4.5 as 6 fps . First design for the mowed condition
\[
A=Q / v=25 / 6=4.17 \mathrm{ft}^{2}
\]

Table 4.4 Guide to Selection of Vegetal Retardance \({ }^{a}\)
\begin{tabular}{lcc}
\hline Stand & \begin{tabular}{c} 
Length of \\
vegetation (in.)
\end{tabular} & \begin{tabular}{c} 
Retardance \\
class
\end{tabular} \\
\hline Good & \(>30\) & A \\
& \(11-24\) & B \\
& \(6-10\) & C \\
Fair & \(2-6\) & D \\
& \(<2\) & E \\
& \(>30\) & B \\
& \(11-24\) & C \\
& \(6-10\) & D \\
& \(2-6\) & D \\
& \(<2\) & E \\
\hline
\end{tabular}
\({ }^{a}\) Soil Conservation Service (1979) engineering field manual.

Table 4.5 Permissible velocities for Vegetated Channels (Ree, 1949)

"Not recommended.

\section*{DRAWINGS}

\section*{6A-E. 1 through 6A-E. 5}






\section*{APPENDIX 6A-F}

\section*{SOIL LOSS ANALYSIS}


SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6A-F-1 to 6A-F-23

\section*{CITY OF WACO LANDFILL \\ INTERMEDIATE COVER - SOIL LOSS ANALYSIS}
\begin{tabular}{|c|c|}
\hline Required: & Determine expected soil loss for the landfill topslope and sideslope with intermediate cover consistent with 30 TAC §330.305(d)(2). \\
\hline Method: & Expected soil loss is calculated using the Universal Soil Loss Equation (USLE)/Revised Universal Soil Loss Equation (RUSLE). The annual soil loss calculated for intermediate cover conditions is compared to the permissible soil loss of 50 tons/acre/year, as referenced from the TCEQ's "Surface Water Drainage and Erosional Stability Guidance for Municipal Solid Waste Landfill", dated May, 2018. \\
\hline
\end{tabular}

References: 1. SCS National Engineering Handbook, Section 3-Sedimentation, Chapter 3-Erosion.
2. TNRCC, Use of the USLE in Final Cover/Configuration Design, 1993.
3. USDA, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), 1997.
4. United States Department of Agriculture, Soil Conservation Service, Soil Survey of Limestone County, Texas.
5. United States Department of Agriculture, Soil Conservation Service, Soil Survey of Hill County, Texas.
6. Reference: USDA, Predicting Rainfall Erosion Losses, A Guide to Conservation Planning, Agriculture Handbook Number 537, 1978.
7. TCEQ, Surface Water Drainage and Erosional Stability Guidance for Municipal Solid Waste Landfill, May 2018.

Solution: 1. Soil loss equation: \(\quad A=\) RKLSCP
Where: \(\quad\)\begin{tabular}{lll} 
A \(=\) & Soil Loss (tons/ac/yr) \\
& \(R=\) & Rainfall/Runoff Erosivity actor \\
\(\mathrm{K}=\) & Soil Erodibility Factor \\
\(\mathrm{L}=\) & Slope Length Factor \\
\(\mathrm{S}=\) & Slope Steepness Factor \\
\(\mathrm{C}=\) & Cover Management Factor \\
\(\mathrm{P}=\) & Support Practice Factor
\end{tabular}

The rainfall factor, R , is a product of rainfall energy and maximum 30-min intensity. Average annual R values for Eastern United States is presented in Figure 2-1 of USDA 1997. Values of the R Factor (see page 6A-F-9), the R factor for the Site is:
```

R= 305

```

The soil erodibility, K , factor represents the resistance of a soil surface to erosion as a function of the soil's physical and chemical properties. As shown in soil surveys for Limestone County and McLennan County for the applicable on-site soils (see page 6A-F-14) , the weighted average \(K\) factor for the area is:
\[
K=0.350
\]

Prep By: BG
Date: 11/26/2018

Solution (Cont.): The effect of topography on soil erosion are determined by the slope length factor, L, and slope steepness factor, S. The slopes of interest are represented by either of the following: (1) topslope above and sideslope below the first drainage swale placed on intermediate cover or (2) sideslope area between consecutive drainage swales on intermediate cover.
\begin{tabular}{rcc}
\multicolumn{2}{l}{ Topslope Conditions } \\
slope \(=\) & 5 & \(\%\) \\
length, \(\mathrm{I}=\) & 650 & ft
\end{tabular}
\begin{tabular}{rl} 
Sideslope Conditions \\
slope & \(=\) \\
length, \(I\) & \(=\) \\
\hline & 400 \\
\hline
\end{tabular}

Topographic factor, combined slope length and slope steepness factors LS, is based on a moderate rill/interill erosion ratio (see page 6A-F-19).

Topslope, LS \(=\quad 1.37 \quad\) Sideslope, LS \(=\quad 10.65\)

The cover and cropping management factor, C, represents the percentage of soil loss that would occur if the surface were partially protected by some combination of cover and management practices. Use of Table 2 - Factor C for Permanent Pasture, Range, and Idle Land (see page 6A-F-21) for \(60 \%\) ground cover yields the following \(C\) value.
\[
C=0.042
\]

The erosion control practice factor, P , measures the effect of control practices that reduce the erosion potential of the runoff by influencing drainage patterns, runoff concentration, and runoff velocity. Use of Table 3, for Countouring, Countouring, Stripcropping and Terracing (see page 6A-F-22), the \(P\) factor is determined to be:
\[
P=\quad 0.90
\]
2. Soil loss calculations:
\begin{tabular}{||c|c|c|c|c|c|c||}
\hline Slope Condition & R & K & LS & C & P & \begin{tabular}{c}
A \\
(tons/ac/ \\
\(\mathrm{yr})\)
\end{tabular} \\
\hline \begin{tabular}{c}
\(5 \%\) slope \\
650 ft length
\end{tabular} & 305 & 0.35 & 1.37 & 0.042 & 0.90 & 5.5 \\
\hline \begin{tabular}{c}
\(25 \%\) slope \\
400 ft length
\end{tabular} & 305 & 0.35 & 10.65 & 0.042 & 0.90 & 43.0 \\
\hline
\end{tabular}

\section*{Conclusions:}

From review of the annual soil loss on topslopes and sideslopes with intermediate cover, a value of less than 50 tons/acre/year is achieved for both topslopes and sideslopes, consistent with TCEQ's guidance document for addressing erosional stability during all phases of landfill operation. Sideslope swales will be installed on intermediate cover, as specified in Attachment 6A, Section 6 to reduce erosion from intermediate cover. Specifications for installation, inspection, and maintenance of intermediate cover and sideslope swales are also described in Attachment 6A, Section 6.

\section*{FINAL COVER - SOIL LOSS ANALYSIS}

Required: Determine expected soil loss for the landfill topslope and sideslope with final cover consistent with 30 TAC §330.305(d)(2).

Method: Expected soil loss is calculated using the Universal Soil Loss Equation (USLE)/Revised Universal Soil Loss Equation (RUSLE). The annual soil loss calculated for final cover conditions is compared to the permissible soil loss of 3 tons/acre/year, as referenced from the TCEQ's "Surface Water Drainage and Erosional Stability Guidance for Municipal Solid Waste Landfill", dated May, 2018.

References: 1. SCS National Engineering Handbook, Section 3 - Sedimentation, Chapter 3-Erosion.
2. TNRCC, Use of the USLE in Final Cover/Configuration Design, 1993.
2. USDA, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), 1997.
3. United States Department of Agriculture, Soil Conservation Service, Soil Survey of Limestone County, Texas.
3. United States Department of Agriculture, Soil Conservation Service, Soil Survey of Hill County, Texas.
4. Reference: USDA, Predicting Rainfall Erosion Losses, A Guide to Conservation Planning, Agriculture Handbook Number 537, 1978.
5. TCEQ, Surface Water Drainage and Erosional Stability Guidance for Municipal Solid Waste Landfill, May 2018.

Solution:
1. Soil loss equation:
\[
A=R K L S C P
\]
Where: \(\quad\)\begin{tabular}{lll}
\(\mathrm{A}=\) & Soil Loss (tons/ac/yr) \\
\(\mathrm{R}=\) & Rainfall/Runoff Erosivity actor \\
\(\mathrm{K}=\) & Soil Erodibility Factor \\
\(\mathrm{L}=\) & Slope Length Factor \\
\(\mathrm{S}=\) & Slope Steepness Factor \\
\(\mathrm{C}=\) & Cover Management Factor \\
\(\mathrm{P}=\) & Support Practice Factor
\end{tabular}

The rainfall factor, R , is a product of rainfall energy and maximum 30-min intensity. Average annual R values for Eastern United States is presented in Figure 2-1 of USDA 1997. Values of the R Factor (see page 6A-F-9), the \(R\) factor for the Site is:
\[
R=\quad 305
\]

The soil erodibility, K , factor represents the resistance of a soil surface to erosion as a function of the soil's physical and chemical properties. As shown in soil surveys for Limestone County and McLennan County for the applicable on-site soils (see page 6A-F-14) , the weighted average \(K\) factor for the area is:
\[
K=0.350
\]

Solution (Cont.): The effect of topography on soil erosion are determined by the slope length factor, L, and slope steepness factor, S. The slopes of interest are represented by either of the following: (1) topslope above and sideslope below the first drainage swale placed on final cover or (2) sideslope area between consecutive drainage swales on final cover.
\begin{tabular}{rcc}
\multicolumn{2}{r}{ Topslope Conditions } \\
slope \(=\) & 5 & \(\%\) \\
length, \(\mathrm{I}=\) & 250 & ft
\end{tabular}
\begin{tabular}{rcc}
\multicolumn{3}{r}{ Sideslope Conditions } \\
slope \(=\) & 25 & \(\%\) \\
length, \(\mathrm{I}=\) & 130 & ft
\end{tabular}

Topographic factor, combined slope length and slope steepness factors LS, is based on a low rill/interill erosion ratio (see page 6A-F-20).
Topslope, LS =
0.78
Sideslope, LS =
4.68

The cover and cropping management factor, C, represents the percentage of soil loss that would occur if the surface were partially protected by some combination of cover and management practices. Using of Table 2 - Factor C for Permanent Pasture, Range, and Idle Land (see page 6A-F-21) for \(90 \%\) ground cover yields the following \(C\) value.
\[
C=0.006
\]

The erosion control practice factor, P , measures the effect of control practices that reduce the erosion potential of the runoff by influencing drainage patterns, runoff concentration, and runoff velocity. Use of Table 3, for Countouring, Countouring, Stripcropping and Terracing (see page 6A-F-22), the \(P\) factor is determined to be:
\[
P=\quad 0.90
\]
2. Soil loss calculations:
\begin{tabular}{||c|c|c|c|c|c|c||}
\hline Slope Condition & R & K & LS & C & P & \begin{tabular}{c}
A \\
(tons/ac \\
\(/ \mathrm{yr})\)
\end{tabular} \\
\hline \begin{tabular}{c}
\(5 \%\) slope \\
250 ft length
\end{tabular} & 305 & 0.35 & 0.780 & 0.006 & 0.90 & 0.45 \\
\hline \begin{tabular}{c}
\(25 \%\) slope \\
130 ft length
\end{tabular} & 305 & 0.35 & 4.680 & 0.006 & 0.90 & 2.70 \\
\hline
\end{tabular}

\section*{Conclusions:}

From review of the annual soil loss, a value of less than 3 tons/acre/year is achieved, consistent with TCEQ's guidance document for addressing erosional stability during all phases of landfill operation.

\section*{SOIL LOSS ANALYSIS REFERENCES}

\section*{CITY OF WACO LANDFILL \\ R Factor}


Figure 1. Isoerodent Map of Average Annual Rainfall Runoff Erosivity Factor, R.
Reference: USDA, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Research Service, Agriculture Handbook Number 703, 1997.

K Factors for Site Soils
(Table from Limestone County Soil Survey, USDA, NRCS, September 1997

TAALE 14.--DHYSICAL AND CHBMICAL PROPERTIES OF TYE SOILS
(5ho symbol <mans loas than: > moans moro thas. Entriod undor "Rrosion factorg--q" apply to cho ontizo proldio. Entrioa undor "filind arodibility group" and "Organic mateor" apply only to tho ourlaco dayor. absonce of an ontry indicates that data wore not avasiablo or woro not ostimatod)


TABLE 14.--PHYSICAL AND CHEMICAL PROPERTIES OF THE SOILS--Continuod


6A-F-11

TABLE 24.--PHYSICAL AND CHEMICAL PROPERTIES OF THE SOILS--Continuod


TABLE 24.--PHYSICAL AND CHEMICAL PRORERTIES OF THE SOILS-COntinued


6A-F-13 \({ }^{\circ}\)
SCS ENGINEERS

TABLE 14.--PHYSICAL AND CHEMICAL PRORERTIES OE THE SOILS--Continued

* See description of the map unat for composition and behavior characteristics of the map unit.
\begin{tabular}{|lll|}
\hline East Area: (app. 110 acres) \\
AxB & \(29.3 \%\) & 0.37 \\
FeD2 & \(7.6 \%\) & 0.32 \\
FhC2 & \(8.1 \%\) & 0.32 \\
HeB & \(17.8 \%\) & 0.32 \\
WnA & \(37.2 \%\) & 0.37 \\
& & \\
West Area: (app. 75 acres) \\
AxB & \(13.5 \%\) & 0.37 \\
CrB & \(21.1 \%\) & 0.32 \\
FhC2 & \(1.3 \%\) & 0.32 \\
HeB & \(0.6 \%\) & 0.32 \\
WnA & \(54.5 \%\) & 0.37 \\
HeC & \(9 \%\) & 0.32 (from McLennan County Survey) \\
Weighted Average K: 0.35 \\
& \\
\hline
\end{tabular}

United States Department of Agriculture


Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

\section*{Custom Soil Resource Report for} Limestone County, Texas



United States Department of Agriculture


Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

\section*{Custom Soil Resource Report for}

Limestone County, Texas, and McLennan County, Texas

\author{
West Area
}



Table 4-2.
Values for topographic factor, LS, for moderate ratio of rill to interrill erosion. \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Slope \\
(\%)
\end{tabular}} & \multicolumn{17}{|c|}{Horizontal slope length ( t )} \\
\hline & 3 & 6 & 9 & 12 & 15 & 25 & 50 & 75 & 100 & 150 & 200 & 250 & 300 & 400 & 600 & 800 & 1000 \\
\hline 0.2 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.06 & 0.06 & 0.06 \\
\hline 0.5 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.08 & 0.08 & 0.08 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.10 & 0.10 & 0.10 & 0.10 \\
\hline 1.0 & 0.11 & 0.11 & 0.11 & 0.11 & 0.11 & 0.12 & 0.13 & 0.14 & 0.14 & 0.15 & 0.16 & 0.17 & 0.17 & 0.18 & 0.19 & 0.20 & 0.20 \\
\hline 2.0 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.19 & 0.22 & 0.25 & 0.27 & 0.29 & 0.31 & 0.33 & 0.35 & 0.37 & 0.41 & 0.44 & 0.47 \\
\hline 3.0 & 0.22 & 0.22 & 0.22 & 0.22 & 0.22 & 0.25 & 0.32 & 0.36 & 0.39 & 0.44 & 0.48 & 0.52 & 0.55 & 0.60 & 0.68 & 0.75 & 0.80 \\
\hline 4.0 & 0.26 & 0.26 & 0.26 & 0.26 & 0.26 & 0.31 & 0.40 & 0.47 & 0.52 & 0.60 & 0.67 & 0.72 & 0.77 & 0.86 & 0.99 & 1.10 & 1.19 \\
\hline 5.0 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.37 & 0.49 & 0.58 & 0.65 & 0.76 & 0.85 & 0.93 & 1.01 & 1.13 & 1.33 & 1.49 & 1.63 \\
\hline 6.0 & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 & 0.43 & 0.58 & 0.69 & 0.78 & 0.93 & 1.05 & 1.16 & 1.25 & 1.42 & 1.69 & 1.91 & 2.11 \\
\hline 8.0 & 0.42 & 0.42 & 0.42 & 0.42 & 0.42 & 0.53 & 0.74 & 0.91 & 1.04 & 1.26 & 1.45 & 1.62 & 1.77 & 2.03 & 2.47 & 2.83 & 3.15 \\
\hline 10.0 & 0.46 & 0.48 & 0.50 & 0.51 & 0.52 & 0.67 & 0.97 & 1.19 & 1.38 & 1.71 & 1.98 & 2.22 & 2.44 & 2.84 & 3.50 & 4.06 & 4.56 \\
\hline 12.0 & 0.47 & 0.53 & 0.58 & 0.61 & 0.64 & 0.84 & 1.23 & 1.53 & 1.79 & 2.23 & 2.61 & 2.95 & 3.26 & 3.81 & 4.75 & 5.56 & 6.28 \\
\hline 14.0 & 0.48 & 0.58 & 0.65 & 0.70 & 0.75 & 1.00 & 1.48 & 1.86 & 2.19 & 2.76 & 3.25 & 3.69 & 4.09 & 4.82 & 6.07 & 7.15 & 8.11 \\
\hline 16.0 & 0.49 & 0.63 & 0.72 & 0.79 & 0.85 & 1.15 & 1.73 & 2.20 & 2.60 & 3.30 & 3.90 & 4.45 & 4.95 & 5.86 & 7.43 & 8.79 & 10.02 \\
\hline 20.0 & 0.52 & 0.71 & 0.85 & 0.96 & 1.06 & 1.45 & 2.22 & 2.85 & 3.40 & 4.36 & 5.21 & 5.97 & 6.68 & 7.97 & 10.23 & 12.20 & 13.99 \\
\hline 25.0 & 0.56 & 0.80 & 1.00 & 1.16 & 1.30 & 1.81 & 2.82 & 3.65 & 4.39 & 5.69 & 6.83 & 7.88 & 8.86 & 10.65 & 13.80 & 16.58 & 19.13 \\
\hline 30.0 & 0.59 & 0.89 & 1.13 & 1.34 & 1.53 & 2.15 & 3.39 & 4.42 & 5.34 & 6.98 & 8.43 & 9.76 & 11.01 & 13.30 & 17.37 & 20.99 & 24.31 \\
\hline 40.0 & 0.65 & 1.05 & 1.38 & 1.68 & 1.95 & 2.77 & 4.45 & 5.87 & 7.14 & 9.43 & 11.47 & 13.37 & 15.14 & 18.43 & 24.32 & 29.60 & 34.48 \\
\hline 50.0 & 0.71 & 1.18 & 1.59 & 1.97 & 2.32 & 3.32 & 5.40 & 7.17 & 8.78 & 11.66 & 14.26 & 16.67 & 18.94 & 23.17 & 30.78 & 37.65 & 44.02 \\
\hline 60.0 & 0.76 & 1.30 & 1.78 & 2.23 & 2.65 & 3.81 & 6.24 & 8.33 & 10.23 & 13.65 & 16.76 & 19.64 & 22.36 & 27.45 & 36.63 & 44.96 & 52.70 \\
\hline
\end{tabular}
\({ }^{1}\) Such as for row-cropped agricultural and other moderately consolidated soil conditions with little-to-moderate cover (not applicable to thawing soil)

Reference: USDA, Predicting Soil Erosion by Water: A guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural
Research Service, Agriculture Handbook Number 703, 1997.

Table 4-1.
Values for topographic factor, LS, for low ratio of rill to interrill erosion. \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{17}{|c|}{Horizontal slope length (ft)} \\
\hline \begin{tabular}{l}
Slope \\
(\%)
\end{tabular} & \(<3\) & 6 & 9 & 12 & 15 & 25 & 50 & 75. & 100 & 150 & 200 & 250 & 300 & 400 & 600 & 800 & 1000 \\
\hline 0.2 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 \\
\hline 0.5 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 \\
\hline 1.0 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.13 & 0.13 & 0.14 & 0.14 & 0.15 & 0.15 & 0.15 & 0.15 & 0.16 & 0.16 & 0.17 & 0.17 \\
\hline 2.0 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 & 0.21 & 0.23 & 0.25 & 0.26 & 0.27 & 0.28 & 0.29 & 0.30 & 0.31 & 0.33 & 0.34 & 0.35 \\
\hline 3.0 & 0.26 & 0.26 & 0.26 & 0.26 & 0.26 & 0.29 & 0.33 & 0.36 & 0.38 & 0.40 & 0.43 & 0.44 & 0.46 & 0.48 & 0.52 & 0.55 & 0.57 \\
\hline 4.0 & 0.33 & 0.33 & 0.33 & 0.33 & 0.33 & 0.36 & 0.43 & 0.46 & 0.50 & 0.54 & 0.58 & 0.61 & 0.63 & 0.67 & 0.74 & 0.78 & 0.82 \\
\hline 5.0 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.44 & 0.52 & 0.57 & 0.62 & 0.68 & 0.73 & 0.78 & 0.81 & 0.87 & 0.97 & 1.04 & 1.10 \\
\hline 6.0 & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 & 0.50 & 0.61 & 0.68 & 0.74 & 0.83 & 0.90 & 0.95 & 1.00 & 1.08 & 1.21 & 1.31 & 1.40 \\
\hline 8.0 & 0.54 & 0.54 & 0.54 & 0.54 & 0.54 & 0.64 & 0.79 & 0.90 & 0.99 & 1.12 & 1.23 & 1.32 & 1.40 & 1.53 & 1.74 & 1.91 & 2.05 \\
\hline 10.0 & 0.60 & 0.63 & 0.65 & 0.66 & 0.68 & 0.81 & 1.03 & 1.19 & 1.31 & 1.51 & 1.67 & 1.80 & 1.92 & 2.13 & 2.45 & 2.71 & 2.93 \\
\hline 12.0 & 0.61 & 0.70 & 0.75 & 0.80 & 0.83 & 1.01 & 1.31 & 1.52 & 1.69 & 1.97 & 2.20 & 2.39 & 2.56 & 2.85 & 3.32 & 3.70 & 4.02 \\
\hline 14.0 & 0.63 & 0.76 & 0.85 & 0.92 & 0.98 & 1.20 & 1.58 & 1.85 & 2.08 & 2.44 & 2.73 & 2.99 & 3.21 & 3.60 & 4.23 & 4.74 & 5.18 \\
\hline 16.0 & 0.65 & 0.82 & \({ }^{1} 0.94\) & 1.04 & 1.12 & 1.38 & 1.85 & 2.18 & 2.46 & 2.91 & 3.28 & 3.60 & 3.88 & 4.37 & 5.17 & 5.82 & 6.39 \\
\hline 20.0 & 0.68 & 0.93 & 1.11 & 1.26 & 1.39 & 1.74 & 2.37 & 2.84 & 3.22 & 3.85 & 4.38 & 4.83 & 5.24 & 5.95 & 7.13 & 8.10 & 8.94 \\
\hline 25.0 & 0.73 & 1.05 & 1.30 & 1.51 & 1.70 & 2.17 & 3.00 & 3.63 & 4.16 & 5.03 & 5.76 & 6.39 & 6.96 & 7.97 & 9.65 & 11.04 & 12.26 \\
\hline 30.0 & 0.77 & 1.16 & 1.48 & 1.75 & 2.00 & 2.57 & 3.60 & 4.40 & 5.06 & 6.18 & 7.11 & 7.94 & 8.68 & 9.99 & 12.19 & 14.04 & 15.66 \\
\hline 40.0 & 0.85 & 1.36 & 1.79 & 2.17 & 2.53 & 3.30 & 4.73 & 5.84 & 6.78 & 8.37 & 9.71 & 10.91 & 11.99 & 13.92 & 17.19 & 19.96 & 22.41 \\
\hline 50.0 & 0.91 & 1.52 & 2.06 & 2.54 & 3.00 & 3.95 & 5.74 & 7.14 & 8.33 & 10.37 & 12.11 & 13.65 & 15.06 & 17.59 & 21.88 & 25.55 & 28.82 \\
\hline 60.0 & 0.97 & 1.67 & 2.29 & 2.86 & 3.41 & 4.52 & 6.63 & 8.29 & 9.72 & 12.16 & 14.26 & 16.13 & 17.84 & 20.92 & 26.17 & 30.68 & 34.71 \\
\hline
\end{tabular}
\({ }^{1}\) Such as for rangeland and other consolidated soil conditions with cover (applicable to thawing soil where both interill and rill erosion are significant).

Reference: USDA, Predicting Soil Erosion by Water: A guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Research Service, Agriculture Handbook Number 703, 1997.

TABLE 10.-Factor \(\mathbf{C}\) for permanent pasture, range, and idle land \({ }^{1}\)


\footnotetext{
\({ }^{1}\) The listed \(\mathbf{C}\) values assume that the vegetation and mulch are randomly distributed over the entire area.
"Canopy height is measured as the average fall height of water drops falling from the canopy to the ground. Canopy effect is inversely proportional to drop fall height and is negligible if fall height exceeds 33 ft .
\({ }^{3}\) Portion of total-area surface that would be hidden from view by canopy in a vertical projection (a bird's-eye view).
\({ }^{4}\) G: cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 in deep.
W: cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface) or undecayed residues or both.
}

Reference: USDA, Predicting Rainfall Erosion Losses, A Guide to Conservation Planning, Agriculture Handbook Number 537, 1978.

Table \(3 \cdot \mathbf{P}\) Factors for Contouring, Contour Stripcropping and Terracing
\begin{tabular}{|c|c|c|}
\hline Land Slope & \multicolumn{2}{|c|}{ P values } \\
\hline\(\%\) & Contouring \(\dagger\) & Terracing \(\dagger\) \\
\hline \hline 2.0 to 7 & 0.50 & 0.50 \\
\hline 8.0 to 12 & 0.60 & 0.60 \\
\hline 13.0 to 18 & 0.80 & 0.80 \\
\hline 19.0 to 24 & 0.90 & 0.90 \\
\hline
\end{tabular}
(This table appeared in SCS (5), p.9)
\(\dagger\) Contouring and terracing columns are suitable for MSWLF cover. Contour stripcropping \(\longrightarrow\) is not suitable for the type of vegetative cover normally practiced at municipal landfills.

Table 4 Guide for Assigning Soil Loss Tolerance Values (T) to Solid Having Different Rooting Depths
\begin{tabular}{||c|c||}
\hline Rooting Depth & \begin{tabular}{c} 
Soil Loss Tolerance Values \\
Annual Soil Loss - (Tons/Acre)
\end{tabular} \\
\hline Inches & Non-Renewable Soil al \\
\hline \(10-20\) & 1 \\
\hline \(20-40\) & 2 \\
\hline \(40-50\) & 3 \\
\hline \(50-60\) & 4 \\
\hline \(60+\) & \(<5\) \\
\hline
\end{tabular}
(This table appears in SCS (6) p.4)
a/ Soils with unfavorable substrata such as rock or soft rock that cannot be renewed by economical means. Most of the MSWLF covers with constructed, or recompacted clay cap and/or flexible membrane should use this performance criteria.

\section*{USDA}

United States Department of Agriculture

Agricultural Research
Service

Agriculture
Handbook
Number 703

\section*{Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE)}


\title{
APPENDIX 6A-G EROSION AND SEDIMENTATION CONTROL INSPECTION AND MAINTENANCE FORM
}


SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6A-G-1 to 6A-G-2

\title{
CITY OF WACO LANDFILL EROSION AND SEDIMENTATION CONTROL INSPECTION AND MAINTENANCE FORM
}

Date: \(\qquad\) Time: \(\qquad\) Inspector:
\(\qquad\)
The erosion and sedimentation inspection and subsequent landfill cover and BMP maintenance will be completed by a landfill employee at a minimum of daily for active daily cover areas, weekly for inactive daily cover areas, weekly for intermediate cover, and monthly for final cover. Daily inspections will be noted in the cover log. Weekly and monthly inspections will be noted on this form (or an alternate form). Inspections will include inspection of the respective cover and installed non-structural and structural controls. At a minimum the following items will be inspected:
\begin{tabular}{|l|l|l|l|}
\hline INSPECTION ITEMS & OBSERVATIONS & COMMENTS (See Note I) & ACTION (See Note 2) \\
\hline Erosion of daily cover & & & \\
\hline Erosion of intermediate cover & & & \\
\hline Erosion of final cover & & & \\
\hline \begin{tabular}{l} 
Condition of vegetation on intermediate \\
cover
\end{tabular} & & & \\
\hline Condition of vegetation on final cover & & & \\
\hline \begin{tabular}{l} 
Erosion/sedimentation of down-gradient \\
perimeter drainage channel or basin
\end{tabular} & & & \\
\hline \begin{tabular}{l} 
Erosion/sedimentaion at down-gradient \\
offsite discharg outlets
\end{tabular} & & & \\
\hline \begin{tabular}{l} 
Sedimentation of water bodies on-site or \\
on property adjacent to Landfill.
\end{tabular} & & & \\
\hline
\end{tabular}

Note 1: Comments will include suggested maintenance or other follow-up actions, which may entail application of Best Management Practices (BMPs). BMPs include: Drainage Swales and Downchutes, Seeding and Sodding, Mulching, Check Dams, Silt Fences, Compost/Straw Filter Berms or Socks, Vegetative Buffers or Filter Strips, etc

Note 2: Maintenance of landfill cover, non-structural and structural BMPs, perimeter drainage system, etc. will be initiated within 5 days of detection, weather permitting. The date that the maintenance was performed will also be noted on this form under "Action".

\title{
CITY OF WACO LANDFILL TCEQ PERMIT NO. MSW-2400 McLENNAN AND LIMESTONE COUNTIES, TEXAS
}

PART III
SITE DEVELOPMENT PLAN
ATTACHMENT 6B
FLOODPLAIN EVALUATION
Prepared for:

\section*{CITY OF WACO}


Solid Waste Services 501 Schroeder Drive
Waco, TX 76710

Prepared by:


SCS ENGINEERS
Texas Board of Professional Engineers, Reg. No. F-3407
Dallas/Fort Worth Office
1901 Central Drive, Suite 550
Bedford, Texas 76021
817/571-2288
Revision 0 - April 2020
SCS Project No. 16216088.00

\section*{TABLE OF CONTENTS}
SECTION1 INTRODUCTION.................................................................................................................6B-1-1
2 FLOODPLAIN DELINEATION ..... 6B-2-1
2.1 FLOODPLAIN EVALUATION. ..... 6B-2-1
2.2 100-YEAR FLOOD STUDY ..... 6B-2-1
2.2.1 Methodology ..... 6B-2-1
2.2.2 Computations using HEC-HMS ..... 6B-2-4
2.2.3 Computations using HEC-RAS ..... 6B-2-4
2.2.4 Findings of the 100 -year Flood Study ..... 6B-2-4
2.3 REGULATORY COMPLIANCE WITH FLOODPLAIN REQUIREMENTS ..... 6B-2-4
2.3.1 Description of Floodplain [TAC \(\S 330.61(\mathrm{~m})(1)]\) ..... 6B-2-4
2.3.2 Freeboard Requirement [TAC \(\S 330.307(a)\) and (b)] ..... 6B-2-4
2.3.3 Flood Control and Analysis [TAC §330.547(a) ..... 6B-2-5
2.3.4 Floodplains [TAC §330.547] ..... 6B-2-5

\section*{Drawings}

Drawing 6B.1: FEMA Floodplain Map
Drawing 6B.2: Flood Study Drainage Areas
Drawing 6B.3: Proposed Limit of 100-year Flood Study

\section*{Appendices}

6B-A HEC-HMS Input Parameters
6B-B HEC-HMS Input File
6B-C HEC-HMS Output File
6B-D HEC-RAS Output Summary


SCS Engineers
TBPE Reg. \# F-3407

\section*{1 INTRODUCTION}

This Floodplain Evaluation was prepared as a part of the landfill permit application for the City of Waco Landfill (landfill) to be located in McLennan and Limestone Counties, Texas. This evaluation has been prepared consistent with 30 TAC §330.61(m)(1), by delineating the 100-year floodplain, as provided on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map, in relation to the permit boundary. As demonstrated in this attachment, although the floodplain crosses the landfill permit boundary, no waste disposal or construction are proposed during landfill development within the 100-year floodplain.

An additional study of the 100-year flood was performed. The findings of this 100-year flood study identify the 100-year flood level and 100-year flood limits and demonstrate that the landfill and perimeter drainage system will not be impacted by the 100-year flood.

\section*{2 FLOODPLAIN DELINEATION}

\subsection*{2.1 FLOODPLAIN EVALUATION}

A review of the FEMA Flood Insurance Rate Maps, Limestone County, Panel No. 48293C0125C (September 16, 2011) and McLennan County, Panel No. 48309C0250C (September 26, 2008), indicate that the proposed permit boundary encroaches the 100-year floodplain of Horse Creek. In accordance with \(\S 330.63(\mathrm{c})(2)(\mathrm{B})\), an excerpt from the FEMA Flood Insurance Rate Map, which depicts the 100-year floodplain in relation to the limits of waste and permit boundary, is provided on Drawing 6B.1. As shown on this drawing, the limits of waste are not located in the 100-year floodplain.

In accordance with the Flood Insurance Rate Map, the floodplain for this area of Limestone County has been designated as a "Special Flood Hazard Area - Zone A". A Zone A areas are defined by FEMA as "Areas with a 1 percent annual probability of flooding and a 26 percent probability of flooding over the life of a 30-year period. Because detailed analyses are not performed for such areas, no depths or base flood elevations are shown within these zones".

The delineated floodplain has also been depicted on Drawing 6B. 3 and drawings provided in Attachment 6A - Surface Water Drainage Plan, including Drawing 6A. 3 - Drainage Structure Plan, which present the landfill at final closure. As shown on this drawing neither the waste disposal limits nor drainage features will be located within the 100-year floodplain and there will be no construction in the floodplain.

Additionally, the landfill has been designed with a perimeter berm above existing grade, above the 100 -year flood level and outside of the 100 -year flood limits and 100-year floodplain. No construction, structures, or other items that might impair the adequacy for safe passage of these or any other internal or external flood waters are proposed. Therefore, the landfill and perimeter drainage system will not be impacted by the 100-year floodplain or the 100-year flood.

\subsection*{2.2 100-YEAR FLOOD STUDY}

Since the floodplain for the project area has been designated as Zone A (no base flood elevations in the FEMA Flood Insurance Rate Map), an additional flood study was performed to determine the flooding levels and limits of the 100-year storm event and confirm that the proposed landfill and perimeter drainage system will not be impacted by a 100 -year storm event. This 100 -year flood study is presented in this section.

\subsection*{2.2.1 Methodology}

\subsection*{2.2.1.1 Hydrologic Analysis Methods}

This subsection describes the hydrologic methodology used for the 100-year flood study. The peak flow rates and total discharge volumes of the upstream drainage areas were estimated to evaluate the impacts of the 100 -year event to the proposed landfill area. The hydrologic conditions of the on-site and off-site (upstream) watershed subbasins (drainage areas) were modeled for a 100-year, 24-hour storm event using the U.S. Army Corp of Engineers', Hydrologic Engineering Center’s - Hydrologic Modeling System, Version 4.0 computer software
(referred to as HEC-HMS). HEC-HMS was used to develop hydrographs for the drainage areas for computation of the peak flow rates and total discharge volumes, which will be used for the 100 -year flood boundary estimation. When modeling the on-site watershed subbasins, both preand post-development conditions were used. The pre-development on-site and off-site watershed subbasins and surrounding drainage features modeled using HEC-HMS are provided on Drawing 6B.2. Post-development on-site conditions and watershed subbasins are provided on Drawing 6A.2. The hypothetical precipitation distribution, which is one of the HEC-HMS input parameters, used in this analysis was derived from the National Weather Service, Technical Paper No. 40 (TP-40). A Type III storm event with a return period of 100 years and duration of 24 hours was used for the hydrologic modeling. This storm event is associated with approximately 9.9 inches of precipitation, which was assumed to be evenly distributed across the entire watershed for the return period. A figure presenting the source of the precipitation data used in the model is included in Appendix 6B.A.

Further description of HEC-HMS computer program and other HEC-HMS input parameters are provided in Appendix 6A. HEC-HMS input parameters used in the 100-year flood study are summarized in a table included in Appendix 6B.A, and Reservoir 19 Outlet structure (Elevation-Area-Discharge Relationship) is provided in Appendix 6A-A. Drainage areas included in the flood studies are provided on Drawings 6A. 2 and 6B.2.

\subsection*{2.2.1.2 Hydraulic Analysis Methods}

This section describes the methodology used for evaluating hydraulic parameters, including water surface elevation, geometry and peak flow velocities for Packwood Creek and Horse Creek for a 100-year storm event. Water surface elevations were estimated for five and eleven cross sections for Packwood Creek and Horse Creek, respectively. These water elevations were then used to estimate the boundary of the 100-year flood. The locations of the analyzed cross sections are presented in Drawing 6B.3.

In order to estimate the 100-year flood boundary, the U.S. Army Corp of Engineers', Hydrologic Engineering Center’s - River Analysis System, Version 5.0.4 computer software (referred to as HEC-RAS) was used. HEC-RAS is a software that performs one-dimensional steady flow hydraulics, one and two dimensional unsteady flow calculations, sediment transport/mobile bed computations, and water temperature/water quality modeling. One dimensional steady flow hydraulics, which is based on the one-dimensional energy equation, was used for this 100-year flood study.

Input parameters for the HEC-RAS model include cross sectional data (locations and geometries of the cross sections) and the peak flow rates for the cross sections that were estimated using HEC-HMS as explained in the previous section. Cross sections analyzed for Packwood Creek and Horse Creek are shown in Drawing 6B.3. The pre-development peak flow rates were either the same or higher than the post-development peak flowrates, as shown in Table 6B.1; therefore, the pre-development flowrates were input into the HEC-RAS model.

TABLE 6B. 1
COMPARISON OF PRE- AND POST-DEVELOPMENT CONDITIONS PEAK DISCHARGE RATE

Location: POD-A1
\begin{tabular}{|c|c|}
\hline Condition & Peak Discharge Rate (cfs) \\
\hline Pre-development & 2579.1 \\
\hline Post-development & 2467.0 \\
\hline Percent Change & -4.3 \\
\hline
\end{tabular}

\section*{Location: POD-A2}
\begin{tabular}{|c|c|}
\hline Condition & Peak Discharge Rate (cfs) \\
\hline Pre-development & 3224.2 \\
\hline Post-development & 2943.1 \\
\hline Percent Change & -8.7 \\
\hline
\end{tabular}

Location: B/POD-B
\begin{tabular}{|c|c|}
\hline Condition & Peak Discharge Rate (cfs) \\
\hline Pre-development & 4233.4 \\
\hline Post-development & 4112.9 \\
\hline Percent Change & -2.8 \\
\hline
\end{tabular}

As part of this permit application, the construction of an access road with four 8 ft by 8 ft concrete box culverts is proposed. These culverts, which will be located between Cross Sections 6 and 5 of Horse Creek, are included in the HEC-RAS model. Using this input information, HEC-RAS provides minimum channel elevations, water surface elevations, flow velocities, flow areas, and top channel widths.

\subsection*{2.2.2 Computations using HEC-HMS}

HEC-HMS input file is included in Appendix 6B.B. HEC-HMS output files for each drainage area and a summary of estimated peak discharges, which are used in HEC-RAS analysis, are provided in Appendix 6B.C.

\subsection*{2.2.3 Computations using HEC-RAS}

HEC-RAS output file summary is presented in Appendix 6B.D. Using the water surface elevations (flooding levels) corresponding to the analyzed cross sections, the limit of 100-year flood is delineated. Figure 6B. 3 shows this delineation of the 100-year flood.

\subsection*{2.2.4 Findings of the 100 -year Flood Study}

As shown on Drawing 6B. 3 the waste disposal limits are not located within the flooding limits of the 100 -year flood study. Additionally, the landfill has been designed with a perimeter berm above existing grade, above the 100-year flood level and outside of the 100-year flood limits and 100-year floodplain.

No construction, structures, or other items that might impair the adequacy for safe passage of these or any other internal or external flood waters are proposed.

The landfill will not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain, nor result in washout of solid waste so as to pose a hazard to human health and the environment.

\subsection*{2.3 REGULATORY COMPLIANCE WITH FLOODPLAIN REQUIREMENTS}

This subsection confirms compliance of the proposed permit application with the various floodplain requirements set forth in 30 TAC 330.

\subsection*{2.3.1 Description of Floodplain [TAC §330.61(m)(1)]}

The delineated floodplain from the FEMA Flood Insurance Rate Map of Limestone County, Texas has been depicted on Drawing 6B. 1 and drawings provided in Attachment 6A - Surface Water Drainage Plan, including Drawing 6A.3 - Drainage Structure Plan. As shown on these drawings neither the waste disposal limits nor drainage features will be located within the 100year floodplain.

The site will not require any levees or other improvements to provide protection from the 100year floodplain. Therefore, the requirements of 30 TAC §301, Subchapter C, relating to Approval of Levees and Other Improvements are not applicable.

\subsection*{2.3.2 Freeboard Requirement [TAC §330.307(a) and (b)]}

The proposed landfill has been designed with a perimeter berm above existing grade, above the 100 -year flood level and outside of the 100-year flood limits and 100-year floodplain. The site
will not require any levees or other improvements to provide protection from the 100-year floodplain or 100-year flooding event.

\subsection*{2.3.3 Flood Control and Analysis [TAC §330.547(a)}

As shown on Drawings 6B. 1 and 6B.3, no solid waste disposal operations are proposed in the 100-year floodplain. As shown on Drawing 6B.1, no 100-year floodways are shown within the proposed permit boundaries. No solid waste disposal operations will be in areas that are located in a 100-year floodway as defined by the Federal Emergency Management Agency.

\subsection*{2.3.4 Floodplains [TAC §330.547]}

\subsection*{2.3.4.1 Restriction of 100 -year Flood}

The municipal solid waste management units are not located in a 100-year floodplain.
Development of the proposed landfill will not cause restriction in the flow of the 100-year flood.

\subsection*{2.3.4.2 Reduction of Temporary Storage within Floodplain}

The municipal solid waste management units are not located in a 100-year floodplain.

\subsection*{2.3.4.3 Washout of Solid Waste}

The municipal solid waste management units are not located in a 100-year floodplain.
Development of the proposed landfill will not result in washout of solid waste so as to pose a hazard to human health and the environment.

\section*{DRAWINGS}
- Drawing 6B.1: FEMA Floodplain Map
- Drawing 6B.2: Flood Study Drainage Areas
- Drawing 6B.3: Proposed Limit of 100-year Flood Study



\section*{APPENDIX 6B-A}

\section*{HEC-HMS INPUT PARAMETERS}
- Subbasin Input Parameters
- Precipitation Data


\section*{SCS Engineers}

TBPE Reg. \# F-3407
Inclusive of pages 6B-A-1 to 6B-A-10

\title{
SUBBASIN INPUT PARAMETERS
}

Pre-Development Conditions

2-yr, 24-hr Rainfall Depth \(=\quad 4.25\) inches
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Discharge Study Point} & \multicolumn{2}{|r|}{Area} & \multirow[b]{2}{*}{CN} & \multicolumn{4}{|c|}{Sheet Flow} & \multicolumn{4}{|c|}{Shallow Concentrated Flow} & \multicolumn{8}{|c|}{Open Channel Flow} & \multicolumn{4}{|c|}{Time of Concentration ( \(\mathrm{T}_{\mathrm{c}}\) )} & \multirow[b]{2}{*}{Total Lag Time (min)} \\
\hline & (acres) & (sq miles) & & \[
\begin{aligned}
& \text { Length } \\
& (\mathrm{ft})
\end{aligned}
\] & Surface Description & Slope (ft/ft) & \[
\underset{\mathrm{n}}{\text { Manning }}
\] & Length (ft) & Surface Description & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & \[
\begin{aligned}
& \text { Avg. } \\
& \text { Velocity } \\
& \text { (ft/s) }
\end{aligned}
\] & Length (ft) & Surface Description & Slope (ft/ft) & \[
\underset{\mathrm{n}}{\substack{\text { Manning } \\ \hline}}
\] & \begin{tabular}{l}
Cross- \\
sectional \\
Area ( \(\mathrm{ft}^{2}\) )
\end{tabular} & Wetted Perimeter (ft) & Hydraulic Radius (ft) & \begin{tabular}{l}
Avg. \\
Velocity \\
(ft/s)
\end{tabular} & \[
\begin{aligned}
& \text { Sheet } \\
& \text { Flow } \mathrm{T}_{\mathrm{c}} \\
& (\mathrm{~min})
\end{aligned}
\] & \begin{tabular}{l} 
Shallow \\
Concentrated \\
Flow \(\mathrm{T}_{\mathrm{c}}\) \\
(min) \\
\hline
\end{tabular} & \begin{tabular}{l}
Channel \\
Flow \(\mathrm{T}_{\mathrm{c}}\) \\
(min)
\end{tabular} & Total \(\mathrm{T}_{\mathrm{c}}\)
\[
(\mathrm{min})
\] & \\
\hline A-1 & 425.0 & 0.664 & 80.0 & 300 & Grass & 0.011 & 0.15 & 1,080 & Grass & 0.021 & 1.01 & 10,953 & Grass & 0.007 & 0.026 & 43.7 & 29 & 1.48 & 6.10 & 26.0 & 17.8 & 29.9 & 73.8 & 44.3 \\
\hline A-2 & 617.8 & 0.965 & 79.5 & 300 & Grass & 0.027 & 0.15 & 2,324 & Grass & 0.013 & 0.79 & 15,934 & Grass & 0.006 & 0.026 & 77.8 & 88 & 0.89 & 3.95 & 18.2 & 49.0 & 67.2 & 134.3 & 80.6 \\
\hline A-3 & 292.8 & 0.457 & 73.9 & 300 & Grass & 0.023 & 0.15 & 2,469 & Grass & 0.017 & 0.92 & 7,364 & Grass & 0.002 & 0.026 & 46.6 & 26 & 1.79 & 3.55 & 19.3 & 45.0 & 34.6 & 98.8 & 59.3 \\
\hline A-4 & 90.0 & 0.141 & 78.2 & 300 & Grass & 0.007 & 0.15 & 1,422 & Grass & 0.013 & 0.80 & 1,109 & Grass & 0.009 & 0.026 & 17.9 & 20 & 0.90 & 5.05 & 30.8 & 29.6 & 3.7 & 64.1 & 38.5 \\
\hline B & 3861.2 & 6.033 & 78.3 & 300 & Grass & 0.021 & 0.15 & 9,736 & Grass & 0.009 & 0.67 & 28,029 & Grass & 0.002 & 0.026 & 185.9 & 46 & 4.04 & 6.98 & 20.1 & 243.2 & 66.9 & 330.2 & 198.1 \\
\hline C & 4004.3 & 6.257 & 78.3 & 300 & Grass & 0.007 & 0.15 & 7,141 & Grass & 0.011 & 0.73 & 27,793 & Grass & 0.002 & 0.026 & 227.8 & 54 & 4.22 & 7.23 & 31.2 & 163.5 & 64.1 & 258.8 & 155.3 \\
\hline D & 71.1 & 0.111 & 81.5 & 300 & Grass & 0.017 & 0.15 & 1,510 & Grass & 0.026 & 1.12 & - & - & - & - & - & - & - & - & 21.6 & 22.4 & - & 44.0 & 26.4 \\
\hline E & 49.0 & 0.077 & 78.3 & 300 & Grass & 0.025 & 0.15 & 2,660 & Grass & 0.005 & 0.50 & - & - & - & - & - & - & - & - & 18.7 & 88.1 & - & 106.8 & 64.1 \\
\hline Reservoir 19 & 67.6 & 0.106 & 99. & & & & & & & & & & & & & & & & & & & & & 1.0 \\
\hline
\end{tabular}

Channel Section:

\begin{tabular}{||c|c|c|c|c|c|c|c||}
\hline & \begin{tabular}{c} 
a \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c}
d \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
left slope \\
\((\%)\)
\end{tabular} & \begin{tabular}{c} 
right slope \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
b \\
\((\mathrm{ft})\)
\end{tabular} & Area (ft) & Wetted \(\mathrm{P} \quad(\mathrm{ft})\) \\
\hline A-1 Channel Section: & 15 & 2.0 & 33.0 & 25.0 & 28.9 & 43.7 & 29.43 \\
\hline A-2 Channel Section: & 42 & 1.2 & 7.7 & 4.0 & 87.6 & 77.8 & 87.65 \\
\hline A-3 Channel Section: & 5 & 3.2 & 22.5 & 50.0 & 25.0 & 46.6 & 26.04 \\
\hline A-4 Channel Section: & 8 & 1.3 & 26.5 & 19.9 & 19.5 & 17.9 & 19.76 \\
\hline B Channel Section: & 6 & 77.6 & 50.0 & 35.0 & 42.9 & 185.9 & 46.00 \\
\hline C Channel Section: & 12 & 7.2 & 33.3 & 40.0 & 51.5 & 227.8 & 54.01 \\
\hline \hline
\end{tabular}

\title{
SUBBASIN INPUT PARAMETERS
}

\author{
Post-Development Conditions
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Open Channel Flow} & \multicolumn{4}{|c|}{Time of Concentration ( \(\mathrm{T}_{\mathrm{c}}\) )} & \\
\hline \begin{tabular}{l}
Avg. \\
Velocity \\
(ft/s)
\end{tabular} & Length (ft) & Surface Description & Slope (ft/ft) & \[
\underset{\mathrm{n}}{\text { Manning }}
\] & Crosssectional Area ( \(\mathrm{ft}^{2}\) ) & \begin{tabular}{l}
Wetted \\
Perimeter \\
(ft)
\end{tabular} & Hydraulic Radius (ft) & Avg. Velocity (ft/s) & \begin{tabular}{l}
Sheet \\
Flow \(\mathrm{T}_{\mathrm{c}}\) \\
(min)
\end{tabular} & \begin{tabular}{l} 
Shallow \\
Concentrated \\
Flow \(T_{\mathrm{c}}\) \\
(min) \\
\hline
\end{tabular} & \begin{tabular}{l}
Channel \\
Flow \(\mathrm{T}_{\mathrm{c}}\) (min)
\end{tabular} & Total \(\mathrm{T}_{\mathrm{c}}\) (min) & \[
\begin{gathered}
\text { Total Lag } \\
\text { Time } \\
(\min )
\end{gathered}
\] \\
\hline 1.01 & 10,953 & Grass & 0.007 & 0.026 & 43.7 & 29 & 1.48 & 6.10 & 26.0 & 17.8 & 29.9 & 73.8 & 44.3 \\
\hline 0.79 & 15,934 & Grass & 0.006 & 0.026 & 77.8 & 88 & 0.89 & 3.95 & 18.2 & 49.0 & 67.2 & 134.3 & 80.6 \\
\hline 0.80 & - & - & - & - & - & - & - & - & 30.8 & 31.8 & - & 62.6 & 37.6 \\
\hline 0.67 & 28,029 & Grass & 0.002 & 0.026 & 185.9 & 46 & 4.04 & 6.98 & 20.1 & 243.2 & 66.9 & 330.2 & 198.1 \\
\hline 0.73 & 27,793 & Grass & 0.002 & 0.026 & 227.8 & 54 & 4.22 & 7.23 & 31.2 & 163.5 & 64.1 & 258.8 & 155.3 \\
\hline 1.12 & - & - & - & - & - & - & - & - & 21.6 & 22.4 & - & 44.0 & 26.4 \\
\hline 0.75 & - & - & - & - & - & - & - & - & 18.7 & 26.2 & - & 44.9 & 26.9 \\
\hline - & - & - & - & - & - & - & - & - & - & & - & & 1.0 \\
\hline
\end{tabular}
\[
\xrightarrow[{\underset{d}{d}}_{4}^{b}]{\stackrel{\text { d }}{4} \text { a }}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \hline & \begin{tabular}{c}
a \\
\(\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c}
d \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c} 
left slope \\
\((\%)\)
\end{tabular} & \begin{tabular}{c} 
right slope \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
b \\
\((\mathrm{ft})\)
\end{tabular} & Area \(\quad\left(\mathrm{ft}^{2}\right)\) & Wetted \(\mathrm{P} \quad(\mathrm{ft})\) \\
\hline A-1 Channel Section: & 15 & 2.0 & 33.0 & 25.0 & 28.9 & 4.73 & 29.43 \\
\hline A-2 Channel Section: & 42 & 1.2 & 7.7 & 4.0 & 87.6 & 77.8 & 87.65 \\
\hline B Channel Section: & 6 & 7.6 & 50.0 & 35.0 & 42.9 & 185.9 & 46.00 \\
\hline C Channel Section: & 12 & 7.2 & 33.3 & 40.0 & 51.5 & 227.8 & 54.01 \\
\hline
\end{tabular}

CITY OF WACO LANDFILL
KINEMATIC WAVE INPUT PARAMETERS
POST-DEVELOPMENT CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\[
\left.\right|_{\text {Point }} ^{\text {Discharge Study }}
\]} & \multirow{3}{*}{Contributing Drainage Areas} & \multicolumn{3}{|c|}{Drainage Plane} & \multicolumn{7}{|c|}{Collector} & \multicolumn{5}{|c|}{Main Channel} & \multirow{3}{*}{\[
\underset{\substack{\text { Area (sq. } \\ \text { mi. }}}{ }
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Curve } \\
\text { Number } \\
\text { (CN) }
\end{gathered}
\]} & \multicolumn{6}{|c|}{SCS Method} \\
\hline & & Length & Slope & \multirow[t]{2}{*}{Roughness} & Area & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { No. of } \\
& \text { Collectors }
\end{aligned}
\]} & Length & Slope & \multirow[t]{2}{*}{\begin{tabular}{l}
Manning's \\
Coefficien
\end{tabular}} & Width & Sideslope & Length & Slope & \multirow[t]{2}{*}{\begin{tabular}{l}
Manning's \\
Coefficien
\end{tabular}} & Width & \multirow[t]{2}{*}{\begin{tabular}{l}
Sideslope \\
\(\mathrm{xH}: 1 \mathrm{IV}\)
\end{tabular}} & & & Stream Length & Slope & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Manning n}} & \multirow[t]{2}{*}{\[
\frac{\text { Sheet Flow } \mathbf{T}_{c}}{(\min )}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Lag Time } \\
\hline(\min ) \\
\hline
\end{gathered}
\]} \\
\hline & & (fi) & (fiffit & & (sq. mil.) & & (fit) & (fiffit & & (fit) & xH:1V & (fit) & (fiffit & & (fit) & & & & (fit) & (ffffit & & & & \\
\hline \multirow[t]{5}{*}{PoD-1} & DA-1A & 130 & 0.25 & 0.15 & 0.00395 & 9 & 847 & 0.01 & 0.027 & 0 & 3 & 536 & 0.25 & 0.033 & 15 & 2 & 0.0355 & 85.0 & - & - & & . & - & - \\
\hline & DA-IB & 189 & 0.05 & 0.15 & - & . & & - & - & - & . & 906 & 0.01 & 0.027 & 0 & 3 & 0.0055 & 85.0 & - & - & & . & - & - \\
\hline & *DA-1C & - & - & - & - & . & . & . & . & - & . & - & . & - & . & . & 0.0042 & 85.0 & 179 & 0.0100 & & 0.15 & 17.87 & 11 \\
\hline & *DA-ID & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & 0.0023 & 85.0 & 138 & 0.0100 & & 0.15 & 14.52 & 9 \\
\hline & **DA-IE & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0.0019 & 85.0 & 179 & 0.2500 & & 0.15 & 4.92 & 5 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{18}{*}{POD-8} & DA-2A & 130 & 0.25 & 0.15 & \({ }^{0.00353}\) & 8 & 757 & 0.01 & 0.027 & 0 & 3 & 950 & 0.25 & 0.033 & 15 & 2 & 0.0282 & 85.0 & - & - & & . & . & . \\
\hline & DA-2B & 117 & 0.05 & 0.15 & & & . & & & - & & 496 & 0.01 & 0.027 & 0 & & 0.0030 & 85.0 & - & - & & - & . & - \\
\hline & DA-3A & 130 & 0.25 & 0.15 & 0.00373 & 10 & 799 & 0.01 & 0.027 & 0 & 3 & 634 & 0.25 & 0.033 & 15 & 2 & 0.0373 & 85.0 & - & - & & . & . & . \\
\hline & DA-3B & 179 & 0.05 & 0.15 & - & - & - & - & - & - & - & 808 & 0.01 & 0.027 & 0 & 3 & 0.0040 & 85.0 & - & - & & - & - & - \\
\hline & DA-3C & 130 & 0.25 & 0.15 & 0.00421 & 10 & 903 & 0.01 & 0.027 & 0 & 3 & 568 & 0.25 & 0.033 & 15 & 2 & 0.0421 & 85.0 & - & - & & . & . & . \\
\hline & DA-3D & 161 & 0.05 & 0.15 & - & - & & & - & - & - & 822 & 0.01 & 0.027 & 0 & 3 & 0.0040 & 85.0 & - & - & & - & - & - \\
\hline & DA-3E & 130 & 0.25 & 0.15 & \({ }^{0.00376}\) & 9 & 807 & 0.01 & 0.027 & 0 & 3 & 693 & 0.25 & 0.033 & 15 & 2 & 0.0339 & 85.0 & - & - & & . & . & . \\
\hline & DA-3F & 181 & 0.05 & 0.15 & - & - & - & - & - & . & - & 866 & 0.01 & 0.027 & 0 & 3 & 0.0027 & 85.0 & - & - & & - & . & - \\
\hline & DA-4A & 130 & 0.25 & 0.15 & 0.00375 & 8 & 804 & 0.01 & 0.027 & 0 & 3 & 438 & 0.25 & 0.033 & 15 & 2 & 0.0300 & 85.0 & - & - & & . & . & . \\
\hline & DA-4B & 236 & 0.05 & 0.15 & - & & - & - & - & . & & 566 & 0.01 & 0.027 & 0 & 3 & 0.0050 & 85.0 & - & - & & . & . & . \\
\hline & DA-4C & 130 & 0.25 & 0.15 & \({ }^{0.00324}\) & 6 & 694 & 0.01 & 0.027 & 0 & 3 & 387 & 0.25 & 0.033 & 15 & 2 & 0.0194 & 85.0 & - & - & & - & - & - \\
\hline & DA-4D & 218 & 0.05 & 0.15 & & & & & - & . & - & 368 & 0.01 & 0.027 & 0 & 3 & 0.0027 & 85.0 & - & - & & - & - & - \\
\hline & *DA-4E & - & - & - & - & - & - & . & - & . & . & - & - & - & . & . & 0.0047 & 85.0 & 104 & 0.0100 & & 0.15 & 11.54 & 7 \\
\hline & DA-5A & 130 & 0.25 & 0.15 & 0.00484 & 7 & 1038 & 0.01 & 0.027 & 0 & 3 & 844 & 0.25 & 0.033 & 15 & 2 & 0.0379 & 85.0 & - & - & & - & - & - \\
\hline & DA.SB & 176 & 0.05 & 0.15 & - & & - & - & - & . & & 554 & 0.01 & 0.027 & 0 & 3 & 0.0036 & 85.0 & - & - & & - & . & . \\
\hline & DA.SC & 130 & 0.25 & 0.15 & 0.00199 & 5 & 427 & 0.01 & 0.027 & 0 & 3 & 370 & 0.25 & 0.033 & 15 & 2 & 0.0099 & 85.0 & - & - & & . & . & - \\
\hline & DA-SD & 242 & 0.05 & 0.15 & - & - & - & - & - & - & - & 491 & 0.01 & 0.027 & & & 0.0048 & 85.0 & - & - & & - & - & - \\
\hline & *DA-SE & - & - & - & - & - & - & - & - & - & - & \(\cdots\) & - & \(\cdots\) & - & - & 0.0033 & 85.0 & 96 & 0.0100 & & 0.15 & 10.87 & 7 \\
\hline
\end{tabular}

Note:
*. Drainage areas indicated with an asterisk, include areas modeled using the Velocity method as described in Attachent 64 , Section 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Open Channel Flow} & \\
\hline \multirow[t]{2}{*}{\[
\underset{\text { Sescription }}{\substack{\text { Surfe } \\ \text { Den }}}
\]} & Length & Slope (ft/fit) & \multirow[t]{2}{*}{Manning n} & \begin{tabular}{c} 
Cross-sectional \\
Area \\
\hline
\end{tabular} & Wetted
Perimeter & Hydraulic Radius & Avg. Velocity & Channel Flow \(\mathrm{T}_{\text {c }}\) \\
\hline & (feet) & (ffffit) & & (fi2) & (fi) & (fi) & (tits) & (min) \\
\hline Grass & 1006 & 0.013 & 0.027 & 5.8 & 9.0 & 0.6 & 4.6 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{a}(\mathrm{ft})\) & \(\mathrm{d}(\mathrm{ft})\) & \begin{tabular}{c} 
leff slope \\
(\%)
\end{tabular} & right slope (\%) & Area (ff2) & Wetted P (ft) \\
\hline \hline \(\mathrm{DA}-\mathrm{IE}\) & 2.85 & 1.0 & 32.0 & 37.0 & 5.8 & 9.0 \\
\hline
\end{tabular}


Chamel Sccio
Chamel Section:


Methodology:
Reference: United States Department of Agriculture. Hydrology National Enginering Handbook, Part 630 (May 2010 ). Chapter 15, Time of Concentratio

Sheet Flow \(T_{c}\)
\(T_{t}=\frac{0.007(n)^{0.8}}{\left(P_{2}\right)^{.0 .5} \mathrm{~s}^{0.4(t e p . ~ 15-8)}}\)
where:
\(\mathrm{T}_{\mathrm{t}}=\)


Shallow Concentrated Flow \(T_{c}\)
\(\mathrm{V}=6.962(\mathrm{~s})^{0.5}\)
Where:
\(\mathrm{v}=\)
Average velocity, fts
\(s=\quad\) slope of the hydraulic grade line, ffftit
(Table 15-3 for Short-grass pasture flow type )

Channel Flow \(T_{c}\)
\[
\begin{aligned}
& \begin{array}{c}
\text { where: } \\
\mathrm{V}=
\end{array} \\
& \underset{\mathrm{r}=}{\mathrm{V}=} \quad \begin{array}{c}
\text { Average velocity, fits } \\
\text { nydraull } \\
\text { and radus, } 1 t
\end{array}
\end{aligned}
\]
\(\mathrm{a}=\) cross.sectional flow area, fi2
\(=\quad \begin{aligned} & \mathrm{P}_{\mathrm{w}}=\text { Weteded perimeter, ft } \\ & \text { slope of the hydraulic grad }\end{aligned}\)
\(\begin{array}{ll}\mathrm{s}= & \begin{array}{l}\text { slope of the hydraulic grade line, fflt } \\ \mathrm{n}=\end{array} \\ \text { Manning's n value for open channel flow (0.027, grass) }\end{array}\)

\section*{PRECIPITATION DATA}

\title{
Design Hydrology and Sedimentology for Small Catchments
}

\section*{C. T. Haan}

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahoma

\section*{B. J. Barfield}

Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, Oklahómà

\section*{J. C. Hayes}

Agricultural and Biological Engineering Department Clemson University
Clemson, South Carolina

\section*{AB}

\section*{Academic Press}

An Imprint of Elsevier
Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo


56

\section*{APPENDIX 6B-B}

\section*{HEC-HMS INPUT FILES}


Inclusive of pages 6B-B-1 to 6B-B-55

\section*{HEC-HMS INPUT FILE}

\section*{Pre-Development Conditions}
```

Basin: Waco LF-Velocity Method
Last Modified Date: 29 April }201
Last Modified Time: 14:23:32
Version: 4.0
Filepath Separator: \
Unit System: English
Missing Flow To Zero: No
Enable Flow Ratio: No
Compute Local Flow At Junctions: No
Enable Sediment Routing: No
Enable Quality Routing: No
End:
Subbasin: C
Canvas X: 897.6261127596445
Canvas Y: -697.3293768545991
Label X: -1.0
Label Y: -8.0
Area: 6.257
Downstream: Site 19 Reservoir
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.3
Transform: SCS
Lag: 155.3
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: B
Canvas X: -1344.1558441558445
Canvas Y: 1142.8571428571427
Label X: 0.0
Label Y: -8.0
Area: 6.033
Downstream: Site 19 Reservoir
Canopy: None
Plant Uptake Method: None

```
```

 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 78.3
 Transform: SCS
 Lag: 198.1
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: A-2
Canvas X: -4021.922428330524
Canvas Y: 3010.1180438448564
Label X: 0.0
Label Y: -9.0
Area: 0.965
Downstream: POD-A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 79.5
Transform: SCS
Lag: 80.6
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: A-1
Canvas X: -5564.935064935065
Canvas Y: 3246.7532467532465
Label X: -50.0
Label Y: -5.0
Area: 0.664
Downstream: POD-A1
Canopy: None
Plant Uptake Method: None
Surface: None

```
```

 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80.0
 Transform: SCS
 Lag: 44.3
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: A-4
Canvas X: -5893.7605396290055
Canvas Y: 1795.9527824620573
From Canvas X: -640.8094435075891
From Canvas Y: -168.63406408094443
Label X: -48.0
Label Y: -4.0
Area: 0.141
Downstream: POD-A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.2
Transform: SCS
Lag: 38.5
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-A1
Canvas X: -3939.1691394658747
Canvas Y: 2047.4777448071218
Label X: 2.0
Label Y: -2.0
Downstream: Horse Creek
End:
Reach: Horse Creek
Canvas X: - 3524.436090225565
Canvas Y: 601.5037593984962
From Canvas X: - 3939.1691394658747
From Canvas Y: 2047.4777448071218

```
```

 Label X: -90.0
 Label Y: 3.0
 Downstream: POD-A2
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 9549
 Energy Slope: 0.0026
 Width: 79.28
 Side Slope: 0.33
 Mannings n: 0.03
 Use Variable Time Step: No
 Channel Loss: None
 End:
Subbasin: A-3
Canvas X: -2689.7133220910637
Canvas Y: 1239.460370994941
Label X: -1.0
Label Y: -9.0
Area: 0.457
Downstream: POD-A2
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73.9
Transform: SCS
Lag: 59.3
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-A2
Canvas X: - 3524.436090225565
Canvas Y: 601.5037593984962
Downstream: Site 19 Reservoir
End:
Subbasin: D
Canvas X: - 3465.430016863407
Canvas Y: -1779.089376053963
Label X: -1.0
Label Y: -7.0

```

Area: 0.111
Downstream: Site 19 Reservoir

Canopy: None
Plant Uptake Method: None

Surface: None

LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 81.5

Transform: SCS
Lag: 26.4
Unitgraph Type: STANDARD
Baseflow: None
End:

Subbasin: RES19
Canvas X: -5227.941176470587
Canvas Y: -1323.5294117647054
Label X: -71.0
Label Y: -6.0
Area: 0.106
Downstream: Site 19 Reservoir

Canopy: None
Plant Uptake Method: None

Surface: None

LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 99

Transform: SCS
Lag: 1
Unitgraph Type: STANDARD

Baseflow: None
End:

Subbasin: E
Canvas X: -5050.590219224284
Canvas Y: -42.158516020235766
Label X: -39.0
Label Y: -6.0
Area: 0.077
Downstream: Site 19 Reservoir
```

Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.3
Transform: SCS
Lag: 64.1
Unitgraph Type: STANDARD
Baseflow: None
End:
Reservoir: Site 19 Reservoir
Description: Reservoir 19
Canvas X: -3396.6942148760336
Canvas Y: -685.9504132231405
Label X: 13.0
Label Y: 13.0
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 520.69
Elevation-Area Table: Site 19 Reservoir
Elevation-Outflow Table: Site 19 Reservoir
Primary Table: Elevation-Outflow
End:
Basin Schematic Properties:
Last View N: 5000.0
Last View S: -5000.0
Last View W: -5000.0
Last View E: 5000.0
Maximum View N: 5000.0
Maximum View S: -5000.0
Maximum View W: -5000.0
Maximum View E: 5000.0
Extent Method: Elements
Buffer: 0
Draw Icons: Yes
Draw Icon Labels: Name
Draw Map Objects: No
Draw Gridlines: No
Draw Flow Direction: No
Fix Element Locations: No
Fix Hydrologic Order: No

```

End:

\section*{HEC-HMS INPUT FILE}

\section*{Post-Development Conditions}
```

Basin: 100-yr post (post)
Last Modified Date: 8 April 2020
Last Modified Time: 19:09:24
Version: 4.0
Filepath Separator: \
Unit System: English
Missing Flow To Zero: No
Enable Flow Ratio: No
Compute Local Flow At Junctions: No
Enable Sediment Routing: No
Enable Quality Routing: No
End:
Subbasin: C
Canvas X: 126498.69369138428
Canvas Y: 56328.96222630968
Area: 6.257
Downstream: Site-19 Reservoir
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.3
Transform: SCS
Lag: 155.3
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: B
Canvas X: 96457.23004556191
Canvas Y: 98053.21728995183
Label X: 1.0
Label Y: -2.0
Area: 5.827
Downstream: POD-B
Canopy: None
Plant Uptake Method: None
Surface: None

```
```

 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 78.3
 Transform: SCS
 Lag: 198.1
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: DA-1B
Canvas X: -64462.498707523046
Canvas Y: 81418.72293022805
Label X: -64.0
Label Y: -5.0
Area: 0.0055
Downstream: DA-1A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 189
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 906
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-1A
Canvas X: -64812.85504775209

```
```

 Canvas Y: 87725.13705435107
 Label X: -61.0
 Label Y: -2.0
 Area: 0.0355
 Downstream: CHAN-1A3
 Canopy 1: None
 Plant Uptake Method: None
 Surface 1: None
 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 130
 Plane 1 Slope: 0.25
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 847
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00395
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 536
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-1C
Canvas X: -131784.3794990044
Canvas Y: 87602.28483115385
Label X: -33.0

```
```

Label Y: -17.0
Area: 0.0042
Downstream: CHAN-1A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: }8
Transform: SCS
Lag: 11
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-1A1
Canvas X: -99271.61878578762
Canvas Y: 94018.22714272387
From Canvas X: -130578.99802267874
From Canvas Y: 93672.90080101142
Label X: -43.0
Label Y: 7.0
Downstream: CHAN-1A2
Route: Muskingum Cunge
Channel: Trapezoid
Length: 404
Energy Slope: 0.01
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-1A2
Canvas X: -64525.10129552474
Canvas Y: 94790.98895805837
From Canvas X: -99271.61878578762
From Canvas Y: 94018.22714272387
Label X: -48.0
Label Y: 6.0
Downstream: CHAN-1A3
Route: Muskingum Cunge

```
```

 Channel: Trapezoid
 Length: 1274
 Energy Slope: 0.008
 Width: 5
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-1A3
Canvas X: -46618.471754574275
Canvas Y: 94531.80798768853
From Canvas X: -64525.10129552474
From Canvas Y: 94790.98895805837
Label X: -53.0
Label Y: 11.0
Downstream: CHAN-1A4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 348
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-1A4
Canvas X: -15641.935225423338
Canvas Y: 96384.24708740615
From Canvas X: -46618.471754574275
From Canvas Y: 94531.80798768853
Label X: -65.0
Label Y: 11.0
Downstream: EDA EAST BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 711
Energy Slope: 0.022
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:

```

6 B-B-1 5
```

Subbasin: EDA EAST
Canvas X: -40922.55845560902
Canvas Y: 80803.58880037066
Label X: -42.0
Label Y: 16.0
Area: 0.003
Downstream: EDA EAST BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 99
Transform: SCS
Lag: 1
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: DA-1D
Canvas X: -17867.228828817577
Canvas Y: 80807.19186364641
Label X: -28.0
Label Y: -17.0
Area: 0.0023
Downstream: EDA EAST BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 9
Unitgraph Type: STANDARD
Baseflow: None
End:
Reservoir: EDA EAST BASIN
Canvas X: -15641.935225423338

```
```

 Canvas Y: 96384.24708740615
 From Canvas X: -43225.466802242976
 From Canvas Y: -15498.126506176006
 Label X: -61.0
 Label Y: 16.0
 Downstream: POD-1
 Route: Modified Puls
 Routing Curve: Elevation-Area-Outflow
 Initial Elevation: 534
 Elevation-Area Table: EDA EAST BASIN
 Elevation-Outflow Table: EDA EAST BASIN
 Primary Table: Elevation-Outflow
 End:
Subbasin: PRE-1R
Canvas X: 21631.73263143032
Canvas Y: 101112.99599461893
Label X: -29.0
Label Y: 14.0
Area: 0.0149
Downstream: POD-1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 74.7
Transform: SCS
Lag: 11
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: DA-1E
Canvas X: 14121.366719974729
Canvas Y: 79972.70676237356
Area: 0.0019
Downstream: POD-1
Canopy: None
Plant Uptake Method: None
Surface: None

```
                                    6 B-B-17
```

 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80
 Transform: SCS
 Lag: 5
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-1
Canvas X: 13008.71991827758
Canvas Y: 96106.08538698187
Label X: -56.0
Label Y: -17.0
Downstream: POD-B
End:
Subbasin: PRE-3R
Canvas X: -3402.820406754967
Canvas Y: 58276.09412927965
Label X: -35.0
Label Y: -18.0
Area: 0.0207
Downstream: POD-3
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 27
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-3
Canvas X: 16346.660323368968
Canvas Y: 58832.41753012821
Label X: -28.0
Label Y: -17.0
Downstream: POD-B
End:

```
```

Subbasin: PRE-2R
Canvas X: -4515.467208452115
Canvas Y: 71349.69404922085
Label X: -39.0
Label Y: -18.0
Area: 0.0086
Downstream: POD-2
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 17
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-2
Canvas X: 14677.690120823274
Canvas Y: 71349.69404922085
Label X: -31.0
Label Y: -18.0
Downstream: POD-B
End:
Subbasin: PRE-4R
Canvas X: -4237.305508027843
Canvas Y: 49653.08141612694
Label X: -40.0
Label Y: -20.0
Area: 0.0056
Downstream: POD-4
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73

```
```

 Transform: SCS
 Lag: 16
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-4
Canvas X: 18571.953926763206
Canvas Y: 50209.4048169755
Label X: -32.0
Label Y: -18.0
Downstream: POD-B
End:
Junction: POD-B
Canvas X: 98404.36194853188
Canvas Y: 75522.11955558507
Downstream: Site-19 Reservoir
End:
Subbasin: A-2
Canvas X: -151490.0711881423
Canvas Y: -19425.503567571664
Area: 0.965
Downstream: POD-A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 79.5
Transform: SCS
Lag: 80.6
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: A-1
Canvas X: -154282.5768804836
Canvas Y: 10151.550332780433
Area: 0.664
Downstream: POD-A1
Canopy: None

```
6B-B-20
```

 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80
 Transform: SCS
 Lag: 44.3
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: A-4
Canvas X: -130362.20471561825
Canvas Y: 6812.608712544854
Area: 0.079
Downstream: POD-A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.2
Transform: SCS
Lag: 37.6
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-A1
Canvas X: -129697.66673617053
Canvas Y: -5202.0848120902665
Label X: -10.0
Label Y: -18.0
Downstream: PRE-8C HC
End:
Reach: PRE-8C HC
Canvas X: 9392.617812761979
Canvas Y: -4032.126765759298
From Canvas X: -129697.66673617053
From Canvas Y: -5202.0848120902665

```
```

 Label X: -70.0
 Label Y: -21.0
 Downstream: POD-8
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 10612
 Energy Slope: 0.0048
 Width: 28.8
 Side Slope: 0.21
 Mannings n: 0.03
 Use Variable Time Step: No
 Channel Loss: None
 End:
Subbasin: PRE-8CR
Canvas X: 5740.873729981919
Canvas Y: 3575.4795055499417
Label X: -1.0
Label Y: -6.0
Area: 0.1898
Downstream: POD-8
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73.1
Transform: SCS
Lag: 37
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: DA-3B
Canvas X: -78984.65339242521
Canvas Y: 25691.23314632714
Area: 0.0040
Downstream: DA-3A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None

```
6B-B-2 2
```

 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 179
 Plane 1 Slope: 0.05
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: Main
 Channel Length: 808
 Channel Slope: 0.01
 Channel Mannings N: 0.027
 Shape: Triangle
 Channel Side Slope: 3
 Channel Number of Steps: 5
 Baseflow: None
 End:
Subbasin: DA-3A
Canvas X: -78984.65339242521
Canvas Y: 20455.0775601547
Label X: -2.0
Label Y: -1.0
Area: 0.0373
Downstream: CHAN-2A5
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5

```

Channel: 2
Collector Length: 799
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00373
Collector Number of Steps: 5
Channel: Main
Channel Length: 634
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:

Subbasin: DA-2B
Canvas X: -83503.45578250417
Canvas Y: 46772.120947446885
Label X: -32.0
Label Y: -19.0
Area: 0.0030
Downstream: DA-2A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave

Plane: 1
Plane 1 Length: 117
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 496
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-2A
Canvas X: -81602.73118551144
Canvas Y: 50650.24144041578
Label X: -33.0
Label Y: 13.0
Area: 0.0282
Downstream: CHAN-2A1
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2
Collector Length: 757
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00353
Collector Number of Steps: 5
Channel: Main
Channel Length: 950
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
```

 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Reach: CHAN-2A1
Canvas X: -93794.06375591485
Canvas Y: 38453.34497887773
From Canvas X: -93884.94450762353
From Canvas Y: 50604.63980581959
Label X: -76.0
Label Y: -1.0
Downstream: CHAN-2A2
Route: Muskingum Cunge
Channel: Trapezoid
Length: 223
Energy Slope: 0.0225
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-2A2
Canvas X: -93774.9276375098
Canvas Y: 28958.301758432593
From Canvas X: -93794.06375591485
From Canvas Y: 38453.34497887773
Label X: -74.0
Label Y: 2.0
Downstream: CHAN-2A3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 818
Energy Slope: 0.0075
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-2A3
Canvas X: -93911.69029629939
Canvas Y: 15038.91265134334

```
```

 From Canvas X: -93774.9276375098
 From Canvas Y: 28958.301758432593
 Label X: -76.0
 Label Y: -7.0
 Downstream: CHAN-2A4
 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 762
 Energy Slope: 0.0225
 Width: 10
 Side Slope: 3
 Mannings n: 0.033
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-2A4
Canvas X: -79087.93352393302
Canvas Y: 15109.185256967845
From Canvas X: -93911.69029629939
From Canvas Y: 15038.91265134334
Label X: -48.0
Label Y: -11.0
Downstream: CHAN-2A5
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1159
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-2A5
Canvas X: -42998.52918042446
Canvas Y: 15117.746065427273
From Canvas X: -79087.93352393302
From Canvas Y: 15109.185256967845
Label X: -62.0
Label Y: -11.0
Downstream: EDA WEST BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 852
Energy Slope: 0.0025

```
6B-B-27

Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

Subbasin: DA-3D
Canvas X: -53700.4164513312
Canvas Y: 26506.054202249274
Label X: -38.0
Label Y: 11.0
Area: 0.0040
Downstream: DA-3C

Canopy 1: None
Plant Uptake Method: None
Surface 1: None

LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85

Transform: Kinematic Wave

Plane: 1
Plane 1 Length: 161
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 822
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5

Baseflow: None
End:

Subbasin: DA-3C
Canvas X: -54025.645098336565
Canvas Y: 21153.231638311023
Label X: -38.0
Label Y: -19.0
Area: 0.0421

Downstream: EDA WEST BASIN

Canopy 1: None
Plant Uptake Method: None

Surface 1: None

LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85

Transform: Kinematic Wave

Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5

Channel: 2
Collector Length: 903
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00429
Collector Number of Steps: 5

Channel: Main
Channel Length: 568
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes

Baseflow: None
End:

Subbasin: DA-3F
Canvas X: -18441.453268080426
Canvas Y: 24146.990494238868
Label X: -56.0
Label Y: -3.0
Area: 0.0027
Downstream: DA-3E
Canopy 1: NonePlant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 181
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 866
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-3E
Canvas X: -17974.119327917317
Canvas Y: 19579.462550758006
Label X: -59.0
Label Y: -5.0
Area: 0.0339
Downstream: CHAN-3A1
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
```

 Plane 1 Slope: 0.25
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 807
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00376
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 693
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Reach: CHAN-3A1
Canvas X: -42998.52918042446
Canvas Y: 15117.746065427273
From Canvas X: -17996.21916407974
From Canvas Y: 15142.540755769209
Label X: -36.0
Label Y: -13.0
Downstream: EDA WEST BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 2037
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

```
Subbasin: EDA WEST
    Canvas X: -43130.79350311213
    Canvas Y: 27144.981808492725
\(6 B-B-31\)
```

 Label X: -46.0
 Label Y: 15.0
 Area: 0.011
 Downstream: EDA WEST BASIN
 Canopy: None
 Plant Uptake Method: None
 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 99
 Transform: SCS
 Lag: 1
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Reservoir: EDA WEST BASIN
Canvas X: -42998.52918042446
Canvas Y: 15117.746065427273
From Canvas X: -25843.4367849071
From Canvas Y: 10575.944546616312
Label X: -78.0
Label Y: -19.0
Downstream: POD-8
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 530
Elevation-Area Table: EDA WEST BASIN
Elevation-Outflow Table: EDA WEST BASIN
Primary Table: Elevation-Outflow
End:
Subbasin: DA-5B
Canvas X: -48966.318849772186
Canvas Y: -52387.91905003268
Area: 0.0036
Downstream: DA-5A
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS

```
6B-B-32

Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 176
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 554
Channel Slope: 0.01
Channel Mannings N: 0.027
Shape: Triangle
Channel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-5A
Canvas X: -48068.6615501185
Canvas Y: -57504.18471161605
Label X: 5.0
Label Y: 1.0
Area: 0.0379
Downstream: CHAN-4B7
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2

Collector Length: 1038
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00484
Collector Number of Steps: 5
Channel: Main
Channel Length: 844
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2
Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:
Subbasin: DA-5D
Canvas X: -83162.79516991359
Canvas Y: -52037.25937385902
Label X: -29.0
Label Y: -19.0
Area: 0.0048
Downstream: DA-5C
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 242
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main
Channel Length: 491
Channel Slope: 0.01
Channel Mannings N: 0.027Shape: TriangleChannel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-5C
Canvas X: -93920.29341517741
Canvas Y: -52037.25937385902
Label X: -30.0
Label Y: -19.0
Area: 0.0099
Downstream: CHAN-4B3
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2
Collector Length: 427
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00199
Collector Number of Steps: 5
Channel: Main
Channel Length: 370
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2

Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:
Subbasin: DA-5E
Canvas X: -95507.46528742944
Canvas Y: -32814.84447658433
Label X: -35.0
Label Y: -20.0
Area: 0.0033
Downstream: CHAN-4B1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 7
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-4B1
Canvas X: -99918.46890222236
Canvas Y: -43191.250020324485
From Canvas X: -100018.86951473463
From Canvas Y: -32978.82169526743
Label X: -78.0
Label Y: -2.0
Downstream: CHAN-4B2
Route: Muskingum Cunge
Channel: Trapezoid
Length: 448
Energy Slope: 0.006
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

6B-B-36
```

Reach: CHAN-4B2
Canvas X: -99985.96232959302
Canvas Y: -52140.32237768591
From Canvas X: -99918.46890222236
From Canvas Y: -43191.250020324485
Label X: -85.0
Label Y: -6.0
Downstream: CHAN-4B3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 104
Energy Slope: 0.0190
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B3
Canvas X: -99946.73749156627
Canvas Y: -61737.672879597725
From Canvas X: -99985.96232959302
From Canvas Y: -52140.32237768591
Label X: -81.0
Label Y: -7.0
Downstream: CHAN-4B4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 714
Energy Slope: 0.007
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B4
Canvas X: -90099.30028619742
Canvas Y: -61766.4197427996
From Canvas X: -99946.73749156627
From Canvas Y: -61737.672879597725
Label X: -48.0
Label Y: -11.0
Downstream: CHAN-4B5
Route: Muskingum Cunge

```
6B-B-37
```

 Channel: Trapezoid
 Length: 341
 Energy Slope: 0.01
 Width: 10
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4B5
Canvas X: -65530.197431344655
Canvas Y: -61720.77131889899
From Canvas X: -90099.30028619742
From Canvas Y: -61766.4197427996
Label X: -53.0
Label Y: -12.0
Downstream: CHAN-4B6
Route: Muskingum Cunge
Channel: Trapezoid
Length: 699
Energy Slope: 0.0065
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B6
Canvas X: -50312.959806994026
Canvas Y: -61791.14000809468
From Canvas X: -65530.197431344655
From Canvas Y: -61720.77131889899
Label X: -45.0
Label Y: -14.0
Downstream: CHAN-4B7
Route: Muskingum Cunge
Channel: Trapezoid
Length: 495
Energy Slope: 0.01
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:

```
```

Reach: CHAN-4B7
Canvas X: -32511.75550095027
Canvas Y: -61742.09825398881
From Canvas X: -50312.959806994026
From Canvas Y: -61791.14000809468
Label X: -45.0
Label Y: -15.0
Downstream: CHAN-4B8
Route: Muskingum Cunge
Channel: Trapezoid
Length: 245
Energy Slope: 0.01
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4B8
Canvas X: -33446.05066845761
Canvas Y: -29597.306973807063
From Canvas X: -32511.75550095027
From Canvas Y: -61742.09825398881
Label X: -10.0
Label Y: -10.0
Downstream: WDA BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1406
Energy Slope: 0.0025
Width: 11
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Subbasin: DA-4B
Canvas X: -53182.882027375046
Canvas Y: -31227.672604332285
Label X: -30.0
Label Y: -21.0
Area: 0.005
Downstream: DA-4A
Canopy 1: None
Plant Uptake Method: None

```
6B-B-39
```

 Surface 1: None
 LossRate 1: SCS
 Percent Impervious Area: 0.0
 Curve Number: 85
 Transform: Kinematic Wave
 Plane: 1
 Plane 1 Length: 236
 Plane 1 Slope: 0.05
 Plane 1 Roughness: 0.15
 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: Main
 Channel Length: 566
 Channel Slope: 0.01
 Channel Mannings N: 0.027
 Shape: Triangle
 Channel Side Slope: 3
 Channel Number of Steps: 5
 Baseflow: None
 End:
Subbasin: DA-4A
Canvas X: -44541.61294511394
Canvas Y: -31227.672604332285
Label X: -27.0
Label Y: -23.0
Area: 0.0300
Downstream: WDA BASIN
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15

```
```

 Plane 1 Percent of Area: 100
 Plane 1 Number of Steps: 5
 Channel: 2
 Collector Length: 804
 Collector Slope: 0.01
 Collector Mannings N: 0.027
 Shape: Triangle
 Collector Side Slope: 3
 Collector Area: 0.00375
 Collector Number of Steps: 5
 Channel: Main
 Channel Length: 438
 Channel Slope: 0.25
 Channel Mannings N: 0.033
 Shape: Trapezoid
 Channel Width: 15
 Channel Side Slope: 2
 Channel Number of Steps: 5
 Route Upstream: Yes
 Baseflow: None
 End:
Subbasin: DA-4D
Canvas X: -84744.4245372149
Canvas Y: -25448.55307862372
Area: 0.0027
Downstream: DA-4C
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 218
Plane 1 Slope: 0.05
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: Main

```
Channel Length: 368
Channel Slope: 0.01
Channel Mannings N: 0.027Shape: TriangleChannel Side Slope: 3
Channel Number of Steps: 5
Baseflow: None
End:
Subbasin: DA-4C
Canvas X: -84744.4245372149
Canvas Y: -20561.474531529442
Area: 0.0194
Downstream: CHAN-4A3
Canopy 1: None
Plant Uptake Method: None
Surface 1: None
LossRate 1: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: Kinematic Wave
Plane: 1
Plane 1 Length: 130
Plane 1 Slope: 0.25
Plane 1 Roughness: 0.15
Plane 1 Percent of Area: 100
Plane 1 Number of Steps: 5
Channel: 2
Collector Length: 694
Collector Slope: 0.01
Collector Mannings N: 0.027
Shape: Triangle
Collector Side Slope: 3
Collector Area: 0.00324
Collector Number of Steps: 5
Channel: Main
Channel Length: 387
Channel Slope: 0.25
Channel Mannings N: 0.033
Shape: Trapezoid
Channel Width: 15
Channel Side Slope: 2

Channel Number of Steps: 5
Route Upstream: Yes
Baseflow: None
End:
Subbasin: DA-4E
Canvas X: -94802.05556642853
Canvas Y: -27700.623999327756
Label X: -33.0
Label Y: 11.0
Area: 0.0047
Downstream: CHAN-4A1
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 85
Transform: SCS
Lag: 7
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: CHAN-4A1
Canvas X: -99612.41688037939
Canvas Y: -16947.720817565078
From Canvas X: -99594.44755383424
From Canvas Y: -27707.389718607825
Label X: -73.0
Label Y: -5.0
Downstream: CHAN-4A2
Route: Muskingum Cunge
Channel: Trapezoid
Length: 434
Energy Slope: 0.0025
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
```

Reach: CHAN-4A2
Canvas X: -84758.90482867799
Canvas Y: -17039.526632119327
From Canvas X: -99612.41688037939
From Canvas Y: -16947.720817565078
Label X: -47.0
Label Y: 3.0
Downstream: CHAN-4A3
Route: Muskingum Cunge
Channel: Trapezoid
Length: 416
Energy Slope: 0.030
Width: 5
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4A3
Canvas X: -58838.42769660833
Canvas Y: -17017.39364914017
From Canvas X: -84758.90482867799
From Canvas Y: -17039.526632119327
Label X: -47.0
Label Y: 8.0
Downstream: CHAN-4A4
Route: Muskingum Cunge
Channel: Trapezoid
Length: 338
Energy Slope: 0.015
Width: 10
Side Slope: 3
Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:
Reach: CHAN-4A4
Canvas X: -32438.239348354735
Canvas Y: -17017.393649140184
From Canvas X: -58838.42769660833
From Canvas Y: -17017.39364914017
Label X: -37.0
Label Y: 8.0
Downstream: CHAN-4A5
Route: Muskingum Cunge

```
```

 Channel: Trapezoid
 Length: 1636
 Energy Slope: 0.006
 Width: 10
 Side Slope: 3
 Mannings n: 0.027
 Use Variable Time Step: No
 Channel Loss: None
 End:
Reach: CHAN-4A5
Canvas X: - 33446.05066845761
Canvas Y: -29597.306973807063
From Canvas X: -32438.239348354735
From Canvas Y: -17017.393649140184
Label X: -78.0
Label Y: 7.0
Downstream: WDA BASIN
Route: Muskingum Cunge
Channel: Trapezoid
Length: 240
Energy Slope: 0.0025
Width: 10
Side Slope: 3
Mannings n: 0.027
Use Variable Time Step: No
Channel Loss: None
End:
Subbasin: WDA
Canvas X: -40411.640574288234
Canvas Y: -39237.09612221115
Label X: -27.0
Label Y: -21.0
Area: 0.010
Downstream: WDA BASIN
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 99
Transform: SCS
Lag: 1
Unitgraph Type: STANDARD

```

Baseflow: None
End:

Reservoir: WDA BASIN
Canvas X: -33446.05066845761
Canvas Y: -29597.306973807063
Label X: -4.0
Label Y: -11.0
Downstream: POD-8

Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 531
Elevation-Area Table: WDA BASIN
Elevation-Outflow Table: WDA BASIN
Primary Table: Elevation-Outflow
End:

Subbasin: PRE-8DR
Canvas X: -21587.64157199234
Canvas Y: -109138.88239504454
From Canvas X: -2451. 2800345420183
From Canvas Y: -51837.25099194079
Label X: -34.0
Label Y: -19.0
Area: 0.0312
Downstream: Junction-2

Canopy: None
Plant Uptake Method: None

Surface: None

LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73.7

Transform: SCS
Lag: 35
Unitgraph Type: STANDARD

Baseflow: None
End:

Junction: Junction-2
Canvas X: -20004.997414405923
Canvas Y: -97269.05121314635
From Canvas X: -2451. 2800345420183
From Canvas Y: -51837.25099194079

6B-B-46
```

 Label X: -48.0
 Label Y: 16.0
 Downstream: Junction-3
 End:
Subbasin: OS-3
Canvas X: 6899.953264563344
Canvas Y: -108347.56031625131
From Canvas X: -2451.2800345420183
From Canvas Y: -51837.25099194079
Label X: -29.0
Label Y: -16.0
Area: 0.02334
Downstream: Junction-3
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 29
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: Junction-3
Canvas X: 10266.326655575278
Canvas Y: -73600.98908444638
From Canvas X: -2451.2800345420183
From Canvas Y: -51837.25099194079
Label X: 2.0
Label Y: -1.0
Downstream: OS-3 REACH
End:
Reach: OS-3 REACH
Canvas X: 9392.617812761979
Canvas Y: -4032.126765759298
From Canvas X: 10266.326655575278
From Canvas Y: -73600.98908444638
Label X: -91.0
Label Y: -18.0
Downstream: POD-8

```
```

 Route: Muskingum Cunge
 Channel: Trapezoid
 Length: 2039
 Energy Slope: 0.0030
 Width: 5
 Side Slope: 10
 Mannings n: 0.03
 Use Variable Time Step: No
 Channel Loss: None
 End:
Junction: POD-8
Canvas X: 9392.617812761979
Canvas Y: -4032.126765759298
Label X: -1.0
Label Y: -5.0
Downstream: POD-A2
End:
Subbasin: PRE-7R
Canvas X: 213.28169876069296
Canvas Y: 17664.485867334617
Label X: -34.0
Label Y: -20.0
Area: 0.0223
Downstream: POD-7
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 30
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-7
Canvas X: 16902.98372421757
Canvas Y: 19055.294369456024
Label X: -31.0
Label Y: -20.0
Downstream: POD-A2
End:

```
```

Subbasin: PRE-9R
Canvas X: 40399.69397230647
Canvas Y: -25972.16863724096
Label X: -31.0
Label Y: -21.0
Area: 0.0029
Downstream: POD-9
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 73
Transform: SCS
Lag: 33
Unitgraph Type: STANDARD
Baseflow: None
End:
Junction: POD-9
Canvas X: 42025.86935885207
Canvas Y: -22302.583533191544
Label X: -2.0
Label Y: -5.0
Downstream: POD-A2
End:
Junction: POD-A2
Canvas X: 47500.770770888485
Canvas Y: -2641.3182636378915
Label X: -34.0
Label Y: 18.0
Downstream: Site-19 Reservoir
End:
Subbasin: D
Canvas X: 131783.76599944563
Canvas Y: -7091.905470426398
Area: 0.111
Downstream: Site-19 Reservoir
Canopy: None
Plant Uptake Method: None

```
```

 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 81.5
 Transform: SCS
 Lag: 26.4
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: RES19
Canvas X: 146248.1744215082
Canvas Y: 2643.7540444234473
Area: 0.106
Downstream: Site-19 Reservoir
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 99
Transform: SCS
Lag: 1
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: PRE-5R
Canvas X: -4237.305508027843
Canvas Y: 39639.26020085282
Label X: -35.0
Label Y: -16.0
Area: 0.0352
Downstream: POD-5
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0

```
```

 Curve Number: 73
 Transform: SCS
 Lag: 29
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-5
Canvas X: 19684.600728460355
Canvas Y: 40751.90700254994
Label X: -30.0
Label Y: -18.0
Downstream: Site-19 Reservoir
End:
Subbasin: E
Canvas X: 99238.84704980475
Canvas Y: -22112.637293337568
Area: 0.023
Downstream: Site-19 Reservoir
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 78.3
Transform: SCS
Lag: 26.9
Unitgraph Type: STANDARD
Baseflow: None
End:
Subbasin: PRE-6R
Canvas X: -621.203402512183
Canvas Y: 27956.468783033022
Label X: -36.0
Label Y: -18.0
Area: 0.0043
Downstream: POD-6
Canopy: None
Plant Uptake Method: None

```
```

 Surface: None
 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 73
 Transform: SCS
 Lag: 26
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Junction: POD-6
Canvas X: 17528.847550172184
Canvas Y: 30976.510101925218
Label X: -30.0
Label Y: -16.0
Downstream: Site-19 Reservoir
End:
Reservoir: Site-19 Reservoir
Canvas X: 99238.84704980475
Canvas Y: 14604.707162667532
Label X: 1.0
Label Y: 5.0
Route: Modified Puls
Routing Curve: Elevation-Area-Outflow
Initial Elevation: 520.69
Elevation-Area Table: Site 19 Reservoir
Elevation-Outflow Table: Site 19 Reservoir
Primary Table: Elevation-Outflow
End:

```
Subbasin: PRE-10B
    Canvas X: -67598.29641900968
    Canvas Y: -84892.19575697934
    From Canvas X: -90031.3351708689
    From Canvas Y: -99990.4409789023
    Label X: 0.0
    Label Y: -2.0
    Area: 0.0029
    Downstream: POD-10
    Canopy: None
    Plant Uptake Method: None
    Surface: None
6B-B-5 2
```

 LossRate: SCS
 Percent Impervious Area: 0.0
 Curve Number: 80
 Transform: SCS
 Lag: 33
 Unitgraph Type: STANDARD
 Baseflow: None
 End:
Subbasin: PRE-10A
Canvas X: -87440.86694689252
Canvas Y: -81930.61806625058
From Canvas X: -90031.3351708689
From Canvas Y: -99990.4409789023
Area: 0.0016
Downstream: PRE-10 TK Parkway
Canopy: None
Plant Uptake Method: None
Surface: None
LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80
Transform: SCS
Lag: 25
Unitgraph Type: STANDARD
Baseflow: None
End:
Reach: PRE-10 TK Parkway
Canvas X: -64340.56095920803
Canvas Y: -102957.81967042494
From Canvas X: -93233.43594239092
From Canvas Y: -103953.33380756754
Label X: -66.0
Label Y: -19.0
Downstream: POD-10
Route: Muskingum Cunge
Channel: Trapezoid
Length: 1215.664
Energy Slope: 0.008
Width: 17.8
Side Slope: 0.12

```

Mannings n: 0.033
Use Variable Time Step: No
Channel Loss: None
End:

Junction: POD-10
Canvas X: -64340.56095920803
Canvas Y: -102957.81967042494
From Canvas X: -90031.3351708689
From Canvas Y: -99990.4409789023
End:

Subbasin: PRE-11
Canvas X: -126412.92443014431
Canvas Y: -90671.2068608241
From Canvas X: -90031.3351708689
From Canvas Y: -99990.4409789023
Area: 0.010
Downstream: POD-11

Canopy: None
Plant Uptake Method: None

Surface: None

LossRate: SCS
Percent Impervious Area: 0.0
Curve Number: 80.0

Transform: SCS
Lag: 19
Unitgraph Type: STANDARD
Baseflow: None
End:

Junction: POD-11
Canvas X: -125197.11832232957
Canvas Y: -98269.99503466622
From Canvas X: -98234.55254098363
From Canvas Y: -98416.36375248755
Label X: -72.0
Label Y: -3.0
End:

Basin Schematic Properties:
Last View N: 5000.0
Last View S: -5000.0
Last View W: -5000.0
Last View E: 5000.0

Maximum View N: 53477.804796960794
Maximum View S: -61263.896628055125
Maximum View W: -117782.14367979346
Maximum View E: 17236.009823300818
Extent Method: Elements
Buffer: 0
Draw Icons: Yes
Draw Icon Labels: Name
Draw Map Objects: No
Draw Gridlines: No
Draw Flow Direction: No
Fix Element Locations: No
Fix Hydrologic Order: No
End:

\section*{APPENDIX 6B-C}

\section*{HEC-HMS OUTPUT FILES}


SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6B-C-1 to 6B-C-20

\section*{HEC-HMS OUTPUT FILE}

\section*{Pre-Development Conditions}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100 -year, 24-hour
\end{tabular}

Basin Model: \(\quad 100-\mathrm{yr}\) pre
Control Specifications: 24-hour
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Hydrologic \\
Element
\end{tabular} & \begin{tabular}{l} 
Drainage Area \\
(MI2)
\end{tabular} & \begin{tabular}{l} 
Peak Discharge \\
(CFS)
\end{tabular} & Time of Peak & \begin{tabular}{l} 
Volume \\
(AC-FT)
\end{tabular} \\
\hline C & 6.257 & 5221.6 & 02Oct2018, 14:45 & 2290.6 \\
\hline B & 6.033 & 4233.4 & 02Oct2018, 15:35 & 2154.2 \\
\hline A-2 & 0.965 & 1290.6 & 02Oct2018, 13:25 & 371.0 \\
\hline A-1 & 0.664 & 1301.1 & 02Oct2018, 12:50 & 260.2 \\
\hline A-4 & 0.141 & 291.4 & 02Oct2018, 12:40 & 53.6 \\
\hline POD-A1 & 1.770 & 2579.1 & 02Oct2018, 12:55 & 684.9 \\
\hline Horse Creek & 1.770 & 2552.5 & 02Oct2018, 13:15 & 680.1 \\
\hline A-3 & 0.457 & 679.7 & 02Oct2018, 13:05 & 159.4 \\
\hline POD-A2 & 2.227 & 3224.2 & 02Oct2018, 13:10 & 839.5 \\
\hline D & 0.111 & 291.9 & 02Oct2018, 12:30 & 44.8 \\
\hline RES19 & 0.106 & 577.6 & 02Oct2018, 12:05 & 55.3 \\
\hline E & 0.077 & 117.4 & 02Oct2018, 13:10 & 29.1 \\
\hline Site 19 Reservoir & 14.811 & 518.8 & 03Oct2018, 00:05 & 161.0 \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { Project: } & \text { City of Waco Landfill } \quad \begin{array}{l}\text { Simulation Run: } 100 \mathrm{yr}, 24 \mathrm{hr} \text { pre-develop 6B } \\ \text { Subbasin: A-1 }\end{array}\end{array}\)
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018,00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 1301.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:50 \\
Precipitation Volume: & 350.6 (AC-FT) & Direct Runoff Volume: & 260.2 (AC-FT) \\
Loss Volume: & 87.6 (AC-FT) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(263.0(\) AC-FT \()\) & Discharge Volume: & 260.2 (AC-FT)
\end{tabular}
\(\begin{array}{lll}\text { Project: } & \text { City of Waco Landfill } \quad \begin{array}{l}\text { Simulation Run: } 100 \mathrm{yr}, 24 \mathrm{hr} \text { pre-develop 6B } \\ \\ \\ \text { Subbasin: A-2 }\end{array}\end{array}\)
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 1290.6 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:25 \\
Precipitation Volume: & \(509.5(\) AC-FT \()\) & Direct Runoff Volume: & 371.0 (AC-FT) \\
Loss Volume: & 130.6 (AC-FT) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & \(378.9(\) AC-FT \()\) & Discharge Volume: & 371.0 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B
Subbasin: A-3
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT
\begin{tabular}{llll} 
Computed Results & & & \\
Peak Discharge: & 679.7 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:05 \\
Precipitation Volume: & 241.3 (AC-FT) & Direct Runoff Volume: & 159.4 (AC-FT) \\
Loss Volume: & 79.4 (AC-FT) & Baseflow Volume: & 0.0 (AC-FT) \\
Excess Volume: & 161.9 (AC-FT) & Discharge Volume: & 159.4 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B
Subbasin: A-4
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100 -year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 291.4 (CFS) & Date/Time of Peak Discharge: & 02 Oct2018, 12:40 \\
Precipitation Volume: & \(74.4(\) AC-FT \()\) & Direct Runoff Volume: & 53.6 (AC-FT) \\
Loss Volume: & \(20.3(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \()\) \\
Excess Volume: & \(54.1(\) AC-FT \()\) & Discharge Volume: & 53.6 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) pre-develop 6B Subbasin: B
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour
\end{tabular}

Volume Units: AC-FT
Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(4233.4(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018}, 15: 35\) \\
Precipitation Volume: & \(3185.4(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(2154.2(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(866.1(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(2319.3(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(2154.2(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B Subbasin: C
\begin{tabular}{ll} 
Start of Run: & 02Oct2018, 00:00 \\
End of Run: & 03Oct2018, 00:05 \\
Compute Time: & 08Apr2020, 12:35:34
\end{tabular}

Volume Units:
\begin{tabular}{ll} 
Basin Model: & 100-yr pre \\
Meteorologic Model: & 100-year, 24-hour \\
Control Specifications: & \(24-\) hour
\end{tabular}

AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(5221.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(020 \mathrm{ct2018}, 14: 45\) \\
Precipitation Volume: & \(3303.7(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(2290.6(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(898.3(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(2405.4(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(2290.6(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B
Subbasin: D
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 291.9 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:30 \\
Precipitation Volume: & 58.6 (AC-FT) & Direct Runoff Volume: & 44.8 (AC-FT) \\
Loss Volume: & \(13.5(\) AC-FT \()\) & Baseflow Volume: & \(0.0(\) AC-FT \\
Excess Volume: & 45.1 (AC-FT) & Discharge Volume: & 44.8 (AC-FT)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr , 24 hr pre-develop 6B Subbasin: E
\begin{tabular}{llll} 
Start of Run: & 02Oct2018,00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24 -hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & 117.4 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:10 \\
Precipitation Volume: & 40.7 (AC-FT) & Direct Runoff Volume: & 29.1 (AC-FT) \\
Loss Volume: & 11.1 (AC-FT) & Baseflow Volume: & \(0.0(\) AC-FT) \\
Excess Volume: & 29.6 (AC-FT) & Discharge Volume: & 29.1 (AC-FT)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Project: City of Waco Landfill} & \multicolumn{2}{|l|}{mulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) pre-develop 6B} \\
\hline \multicolumn{4}{|c|}{Reach: Horse Creek} \\
\hline Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
\hline End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
\hline Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour \\
\hline & Volume Units: & AC-FT & \\
\hline \multicolumn{4}{|l|}{Computed Results} \\
\hline Peak Inflow: & 2579.1 (CFS) & Date/Time of Peak Inflow & 02Oct2018, 12:55 \\
\hline Peak Discharge: & 2552.5 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 13:15 \\
\hline Inflow Volume: & 684.9 (AC-FT) & Discharge Volume: & 680.1 (AC-FT) \\
\hline
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) pre-develop 6B Junction: POD-A1
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour \\
& Volume Units: & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & 2579.1 (CFS) & Date/Time of Peak Discharge: & 02Oct2018, 12:55 \\
Volume: & \(684.9(\) AC-FT \()\) & &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) pre-develop 6B Junction: POD-A2
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour \\
& Volume Units: & AC-FT
\end{tabular}

\section*{Computed Results}
\begin{tabular}{llll} 
Peak Discharge: & \(3224.2(\) CFS \()\) & Date/Time of Peak Discharge: & O2Oct2018, 13:10 \\
Volume: & \(839.5(\) AC-FT \()\) &
\end{tabular}

Project: City of Waco Landfill Simulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) pre-develop 6B Subbasin: RES19
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour
\end{tabular}

Volume Units: AC-FT

Computed Results
\begin{tabular}{llll} 
Peak Discharge: & \(577.6(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(02 \mathrm{Oct2018}, 12: 05\) \\
Precipitation Volume: & \(56.0(\mathrm{AC}-\mathrm{FT})\) & Direct Runoff Volume: & \(55.3(\mathrm{AC}-\mathrm{FT})\) \\
Loss Volume: & \(0.7(\mathrm{AC}-\mathrm{FT})\) & Baseflow Volume: & \(0.0(\mathrm{AC}-\mathrm{FT})\) \\
Excess Volume: & \(55.3(\mathrm{AC}-\mathrm{FT})\) & Discharge Volume: & \(55.3(\mathrm{AC}-\mathrm{FT})\)
\end{tabular}

Project: City of Waco Landfill Simulation Run: 100 yr, 24 hr pre-develop 6B
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Reservoir: } & Site 19 Reservoir \\
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr pre \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 12:35:34 & Control Specifications: & 24-hour
\end{tabular}

Volume Units: AC-FT
\begin{tabular}{llll} 
Computed Results & & \\
Peak Inflow: & \(10595.2(\mathrm{CFS})\) & Date/Time of Peak Inflow: & 02Oct2018, 14:45 \\
Peak Discharge: & \(518.8(\mathrm{CFS})\) & Date/Time of Peak Discharge: & \(03 O c t 2018,00: 05\) \\
Inflow Volume: & \(5413.5(\mathrm{AC}-\mathrm{FT})\) & Peak Storage: & \(5252.5(\mathrm{AC}-\mathrm{FT})\) \\
Discharge Volume: & \(161.0(\mathrm{AC}-\mathrm{FT})\) & Peak Elevation: & \(533.4(\mathrm{FT})\)
\end{tabular}

\section*{HEC-HMS OUTPUT FILE}

\author{
Post-Development Conditions
}

Project: City of Waco Landfill Simulation Run: \(100 \mathrm{yr}, 24 \mathrm{hr}\) (post)
\begin{tabular}{llll} 
Start of Run: & 02Oct2018, 00:00 & Basin Model: & 100-yr post (post) \\
End of Run: & 03Oct2018, 00:05 & Meteorologic Model: & 100-year, 24-hour \\
Compute Time: & 08Apr2020, 14:12:07 & Control Specifications: & 24 -hour
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Hydrologic \\
Element
\end{tabular} & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume (AC-FT) \\
\hline C & 6.257 & 5221.6 & 02Oct2018, 14:45 & 2290.6 \\
\hline B & 5.827 & 4088.8 & 02Oct2018, 15:35 & 2080.7 \\
\hline DA-1B & 0.0055 & 28.0 & 02Oct2018, 12:05 & 2.4 \\
\hline DA-1A & 0.0410 & 211.2 & 02Oct2018, 12:05 & 17.6 \\
\hline DA-1C & 0.0042 & 15.8 & 02Oct2018, 12:10 & 1.8 \\
\hline CHAN-1A1 & 0.0042 & 15.8 & 02Oct2018, 12:15 & 1.8 \\
\hline CHAN-1A2 & 0.0042 & 15.6 & 02Oct2018, 12:20 & 1.8 \\
\hline CHAN-1A3 & 0.0452 & 212.2 & 02Oct2018, 12:05 & 19.4 \\
\hline CHAN-1A4 & 0.0452 & 204.6 & 02Oct2018, 12:05 & 19.4 \\
\hline EDA EAST & 0.003 & 16.3 & 02Oct2018, 12:05 & 1.6 \\
\hline DA-1D & 0.0023 & 9.4 & 02Oct2018, 12:10 & 1.0 \\
\hline EDA EAST BASIN & 0.0505 & 150.0 & 02Oct2018, 12:15 & 20.7 \\
\hline PRE-1R & 0.0149 & 49.0 & 02Oct2018, 12:15 & 5.3 \\
\hline DA-1E & 0.0019 & 8.2 & 02Oct2018, 12:05 & 0.8 \\
\hline POD-1 & 0.0673 & 204.5 & 02Oct2018, 12:15 & 26.8 \\
\hline PRE-3R & 0.0207 & 47.1 & 02Oct2018, 12:30 & 7.2 \\
\hline POD-3 & 0.0207 & 47.1 & 02Oct2018, 12:30 & 7.2 \\
\hline PRE-2R & 0.0086 & 23.9 & 02Oct2018, 12:20 & 3.0 \\
\hline POD-2 & 0.0086 & 23.9 & 02Oct2018, 12:20 & 3.0 \\
\hline PRE-4R & 0.0056 & 15.9 & 02Oct2018, 12:20 & 1.9 \\
\hline POD-4 & 0.0056 & 15.9 & 02Oct2018, 12:20 & 1.9 \\
\hline POD-B & 5.9292 & 4112.9 & 02Oct2018, 15:35 & 2119.6 \\
\hline A-2 & 0.965 & 1290.6 & 02Oct2018, 13:25 & 371.0 \\
\hline A-1 & 0.664 & 1301.1 & 02Oct2018, 12:50 & 260.2 \\
\hline A-4 & 0.079 & 165.7 & 02Oct2018, 12:40 & 30.1 \\
\hline POD-A1 & 1.708 & 2467.0 & 02Oct2018, 13:00 & 661.3 \\
\hline PRE-8C HC & 1.708 & 2455.5 & 02Oct2018, 13:10 & 658.1 \\
\hline PRE-8CR & 0.1898 & 368.3 & 02Oct2018, 12:40 & 65.6 \\
\hline DA-3B & 0.0040 & 20.4 & 02Oct2018, 12:05 & 1.7 \\
\hline DA-3A & 0.0413 & 212.9 & 02Oct2018, 12:05 & 17.7 \\
\hline
\end{tabular}

Page 1
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & \begin{tabular}{l}
Volume \\
(AC-FT)
\end{tabular} \\
\hline DA-2B & 0.0030 & 15.5 & 02Oct2018, 12:05 & 1.3 \\
\hline DA-2A & 0.0312 & 161.1 & 02Oct2018, 12:05 & 13.4 \\
\hline CHAN-2A1 & 0.0312 & 160.1 & 02Oct2018, 12:05 & 13.4 \\
\hline CHAN-2A2 & 0.0312 & 153.3 & 02Oct2018, 12:05 & 13.4 \\
\hline CHAN-2A3 & 0.0312 & 144.6 & 02Oct2018, 12:05 & 13.4 \\
\hline CHAN-2A4 & 0.0312 & 137.3 & 02Oct2018, 12:10 & 13.4 \\
\hline CHAN-2A5 & 0.0725 & 297.3 & 02Oct2018, 12:10 & 31.1 \\
\hline DA-3D & 0.0040 & 20.5 & 02Oct2018, 12:05 & 1.7 \\
\hline DA-3C & 0.0461 & 237.9 & 02Oct2018, 12:05 & 19.8 \\
\hline DA-3F & 0.0027 & 13.7 & 02Oct2018, 12:05 & 1.2 \\
\hline DA-3E & 0.0366 & 188.7 & 02Oct2018, 12:05 & 15.7 \\
\hline CHAN-3A1 & 0.0366 & 168.9 & 02Oct2018, 12:10 & 15.6 \\
\hline EDA WEST & 0.011 & 59.9 & 02Oct2018, 12:05 & 5.7 \\
\hline EDA WEST BASIN & 0.1662 & 89.2 & 02Oct2018, 13:05 & 41.5 \\
\hline DA-5B & 0.0036 & 18.5 & 02Oct2018, 12:05 & 1.5 \\
\hline DA-5A & 0.0415 & 213.9 & 02Oct2018, 12:05 & 17.8 \\
\hline DA-5D & 0.0048 & 24.4 & 02Oct2018, 12:05 & 2.1 \\
\hline DA-5C & 0.0147 & 75.2 & 02Oct2018, 12:05 & 6.3 \\
\hline DA-5E & 0.0033 & 14.1 & 02Oct2018, 12:10 & 1.4 \\
\hline CHAN-4B1 & 0.0033 & 13.8 & 02Oct2018, 12:10 & 1.4 \\
\hline CHAN-4B2 & 0.0033 & 13.7 & 02Oct2018, 12:10 & 1.4 \\
\hline CHAN-4B3 & 0.0180 & 83.1 & 02Oct2018, 12:05 & 7.7 \\
\hline CHAN-4B4 & 0.0180 & 80.2 & 02Oct2018, 12:05 & 7.7 \\
\hline CHAN-4B5 & 0.0180 & 76.6 & 02Oct2018, 12:10 & 7.7 \\
\hline CHAN-4B6 & 0.0180 & 75.6 & 02Oct2018, 12:10 & 7.7 \\
\hline CHAN-4B7 & 0.0595 & 275.9 & 02Oct2018, 12:05 & 25.5 \\
\hline CHAN-4B8 & 0.0595 & 245.3 & 02Oct2018, 12:10 & 25.4 \\
\hline DA-4B & 0.005 & 25.4 & 02Oct2018, 12:05 & 2.1 \\
\hline DA-4A & 0.0350 & 180.1 & 02Oct2018, 12:05 & 15.0 \\
\hline DA-4D & 0.0027 & 13.8 & 02Oct2018, 12:05 & 1.2 \\
\hline DA-4C & 0.0221 & 114.0 & 02Oct2018, 12:05 & 9.5 \\
\hline DA-4E & 0.0047 & 20.1 & 02Oct2018, 12:10 & 2.0 \\
\hline CHAN-4A1 & 0.0047 & 19.5 & 02Oct2018, 12:10 & 2.0 \\
\hline CHAN-4A2 & 0.0047 & 18.9 & 02Oct2018, 12:10 & 2.0 \\
\hline CHAN-4A3 & 0.0268 & 127.6 & 02Oct2018, 12:05 & 11.5 \\
\hline
\end{tabular}

Page 2
\begin{tabular}{|c|c|c|c|c|}
\hline Hydrologic Element & Drainage Area (MI2) & Peak Discharge (CFS) & Time of Peak & Volume
(AC-FT) \\
\hline CHAN-4A4 & 0.0268 & 121.2 & 02Oct2018, 12:10 & 11.5 \\
\hline CHAN-4A5 & 0.0268 & 119.1 & 02Oct2018, 12:10 & 11.5 \\
\hline WDA & 0.010 & 54.5 & 02Oct2018, 12:05 & 5.2 \\
\hline WDA BASIN & 0.1313 & 34.7 & 02Oct2018, 14:45 & 27.9 \\
\hline PRE-8DR & 0.0312 & 63.1 & 02Oct2018, 12:40 & 10.9 \\
\hline Junction-2 & 0.0312 & 63.1 & 02Oct2018, 12:40 & 10.9 \\
\hline OS-3 & 0.02334 & 57.4 & 02Oct2018, 12:30 & 9.2 \\
\hline Junction-3 & 0.05454 & 119.5 & 02Oct2018, 12:35 & 20.1 \\
\hline OS-3 REACH & 0.05454 & 117.9 & 02Oct2018, 12:45 & 20.0 \\
\hline POD-8 & 2.24984 & 2913.3 & 02Oct2018, 13:05 & 813.1 \\
\hline PRE-7R & 0.0223 & 48.2 & 02Oct2018, 12:35 & 7.7 \\
\hline POD-7 & 0.0223 & 48.2 & 02Oct2018, 12:35 & 7.7 \\
\hline PRE-9R & 0.0029 & 6.0 & 02Oct2018, 12:35 & 1.0 \\
\hline POD-9 & 0.0029 & 6.0 & 02Oct2018, 12:35 & 1.0 \\
\hline POD-A2 & 2.27504 & 2943.1 & 02Oct2018, 13:05 & 821.9 \\
\hline D & 0.111 & 291.9 & 02Oct2018, 12:30 & 44.8 \\
\hline RES19 & 0.106 & 577.6 & 02Oct2018, 12:05 & 55.3 \\
\hline PRE-5R & 0.0352 & 77.1 & 02Oct2018, 12:35 & 12.2 \\
\hline POD-5 & 0.0352 & 77.1 & 02Oct2018, 12:35 & 12.2 \\
\hline E & 0.023 & 57.4 & 02Oct2018, 12:30 & 8.8 \\
\hline PRE-6R & 0.0043 & 10.0 & 02Oct2018, 12:30 & 1.5 \\
\hline POD-6 & 0.0043 & 10.0 & 02Oct2018, 12:30 & 1.5 \\
\hline Site-19 Reservoir & 14.74074 & 462.4 & 03Oct2018, 00:05 & 146.2 \\
\hline PRE-10B & 0.0029 & 6.7 & 02Oct2018, 12:35 & 1.1 \\
\hline PRE-10A & 0.0016 & 4.2 & 02Oct2018, 12:30 & 0.6 \\
\hline PRE-10 TK Parkway & 0.0016 & 4.2 & 02Oct2018, 12:35 & 0.6 \\
\hline POD-10 & 0.0045 & 10.9 & 02Oct2018, 12:35 & 1.8 \\
\hline PRE-11 & 0.010 & 29.7 & 02Oct2018, 12:20 & 3.9 \\
\hline POD-11 & 0.010 & 29.7 & 02Oct2018, 12:20 & 3.9 \\
\hline
\end{tabular}

Page 3

\section*{APPENDIX 6B-D}

\section*{HEC-RAS OUTPUT SUMMARY}


SCS Engineers
TBPE Reg. \# F-3407
Inclusive of pages 6B-D-1 to 6B-D-2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline River & Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (sq ft) & (ft) & \\
\hline PW & PW & 5 & PF 1 & 4233.40 & 529.73 & 539.39 & & 539.42 & 0.000485 & 1.38 & 3075.08 & 602.63 & 0.11 \\
\hline PW & PW & 4 & PF 1 & 4233.40 & 521.78 & 533.59 & & 533.99 & 0.009570 & 5.04 & 839.99 & 218.74 & 0.45 \\
\hline PW & PW & 3 & PF 1 & 4233.40 & 516.19 & 533.47 & & 533.47 & 0.000036 & 0.56 & 8349.62 & 1250.45 & 0.03 \\
\hline PW & PW & 2 & PF 1 & 4233.40 & 512.61 & 533.41 & & 533.41 & 0.000007 & 0.28 & 17451.59 & 2543.61 & 0.02 \\
\hline PW & PW & 1 & PF 1 & 4233.40 & 513.30 & 533.40 & 514.71 & 533.40 & 0.000002 & 0.12 & 35190.66 & 4783.34 & 0.01 \\
\hline HC & 1 & 9 & PF 1 & 1301.10 & 537.87 & 541.87 & & 542.33 & 0.034192 & 5.42 & 240.03 & 146.30 & 0.75 \\
\hline HC & 1 & 7 & PF 1 & 2579.10 & 529.03 & 540.00 & & 540.04 & 0.000764 & 1.77 & 1641.33 & 566.67 & 0.14 \\
\hline HC & 1 & 6 & PF 1 & 2579.10 & 527.15 & 538.43 & 532.21 & 538.94 & 0.002868 & 5.72 & 451.14 & 752.84 & 0.30 \\
\hline HC & 1 & 5.1 & & Culvert & & & & & & & & & \\
\hline HC & 1 & 5 & PF 1 & 2579.10 & 527.00 & 536.60 & 532.05 & 537.30 & 0.004894 & 6.71 & 384.38 & 458.69 & 0.38 \\
\hline HC & 1 & 4.1 & PF 1 & 2579.10 & 522.71 & 535.53 & & 535.62 & 0.001679 & 2.56 & 1314.16 & 463.61 & 0.20 \\
\hline HC & 1 & 4 & PF 1 & 2579.10 & 521.25 & 533.78 & & 533.86 & 0.003362 & 2.29 & 1126.09 & 438.45 & 0.25 \\
\hline HC & 1 & 3 & PF 1 & 2579.10 & 515.64 & 533.44 & & 533.45 & 0.000044 & 0.51 & 5128.03 & 879.54 & 0.03 \\
\hline HC & 1 & 2 & PF 1 & 2579.10 & 514.46 & 533.41 & & 533.41 & 0.000010 & 0.22 & 11848.91 & 2167.17 & 0.02 \\
\hline HC & 1 & 1 & PF 1 & 3224.20 & 514.41 & 533.40 & 517.21 & 533.40 & 0.000002 & 0.15 & 24772.75 & 2879.28 & 0.01 \\
\hline HC & 2 & 8.2 & PF 1 & 1290.60 & 539.09 & 545.35 & & 545.39 & 0.001732 & 1.46 & 885.30 & 417.08 & 0.18 \\
\hline HC & 2 & 8.1 & PF 1 & 1290.60 & 532.04 & 537.46 & 537.46 & 538.19 & 0.063870 & 6.84 & 188.81 & 131.54 & 1.00 \\
\hline
\end{tabular}

\title{
CITY OF WACO LANDFILL \\ TCEQ PERMIT NO. MSW-2400 \\ MCLENNAN AND LIMESTONE COUNTIES, TEXAS
}

\section*{PART III - SITE DEVELOPMENT PLAN \\ ATTACHMENT 6C GROUNDWATER PROTECTION PLAN}

\section*{Prepared for:}

\section*{CITY OF WACO}


Solid Waste Services 501 Schroeder Drive Waco, Texas 76710


Prepared by:
SCS ENGINEERS
Texas Board of Professional Engineers, Reg. No. F-3407
Dallas/Fort Worth Office
1901 Central Drive, Suite 550
Bedford, Texas 76021
817/571-2288

Revision 0 - April 2020
SCS Project No. 16216088.00

\section*{TABLE OF CONTENTS}
SECTION PAGE
1 INTRODUCTION ..... 6C-1-1
2 GROUNDWATER PROTECTION DESIGN ..... 6C-2-1
2.1 LINER SYSTEM. ..... 6C-2-1
2.2 LEACHATE COLLECTION SYSTEM. ..... 6C-2-1
2.3 FINAL COVER SYSTEM. ..... 6C-2-2

\section*{Drawings}

6C. 1 Bottom Liner Details
6C. 2 Final Cover Details


\section*{SCS Engineers}

TBPE Reg. \# F-3407

\section*{1 INTRODUCTION}

Attachment 6C presents the landfill components designed for protection of groundwater. Specifically, Attachment 6C presents the liner, leachate collection, and final cover systems proposed for the City of Waco Landfill (landfill). The liner system and final cover system details are presented on Drawings 6C. 1 and 6C.2; and the leachate collection system details are presented on Drawing 12.4. The liner system, leachate collection system, and final cover system have been designed consistent with 30 TAC §330.331, §330.333, and \(\S 330.457\), respectively, as described in the following sections of this attachment.

\section*{2 GROUNDWATER PROTECTION DESIGN}

\subsection*{2.1 LINER SYSTEM}

As shown on Drawing 6C.1, a composite liner system, as defined in §330.331(b), is proposed for the landfill. Beginning from the waste and working down, the bottom liner will be comprised of the following components:
- 24-inch-thick soil protective cover;
- Single-sided geocomposite (non-woven geotextile on the top side only of geonet);
- 60-mil high-density polyethylene (HDPE) geomembrane (smooth);
- 2-foot-thick compacted clay liner ( \(\mathrm{k} \leq 1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}\) ); and
- Prepared subgrade (excavation grade).

The sideslope liner system will be comprised of the following components (from waste and working down):
- 24-inch thick soil protective cover;
- Double-sided geocomposite (non-woven geotextile on both sides of geonet);
- 60-mil textured HDPE geomembrane (textured on both sides);
- 2-foot-thick compacted clay liner ( \(\mathrm{k} \leq 1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}\) ); and
- Prepared subgrade (excavation grade).

The transition between textured geomembrane on the sideslopes and smooth geomembrane on the floor of a cell will occur on the floor. This transition will occur a minimum 5 feet from the toe of the sideslope. The quality assurance and quality control requirements for construction of the liner system is specified in Attachment 10 - Soil and Liner Quality Control Plan (SLQCP).

\subsection*{2.2 LEACHATE COLLECTION SYSTEM}

The leachate collection system (LCS) has been designed in accordance with 30 TAC §330.333. Consistent with \(\S 330.331\) (a)(2), the LCS has been designed to maintain less than 30 centimeters of leachate head over the bottom liner, as confirmed with the Hydrologic Evaluation of Landfill Performance (HELP) model. A demonstration for leachate generation, including maximum head on the liner, is provided in Attachment 12 - Leachate and Contaminated Water Management

Plan, Appendix 12A. This section provides a summary of the LCS and associated components. Additional description is provided in Attachment 12. Drawings that depict the layout of the leachate collection system components, as well as selected details of the leachate collection system are also provided in Attachment 12.

The primary collection component of the LCS is the leachate drainage layer, which consists of a geonet-geotextile composite (referred to as geocomposite) placed directly over the geomembrane component of the liner system. The geocomposite will serve to collect and convey leachate to the LCS pipes and sumps. The geocomposite will consist of an HDPE geonet with a non-woven geotextile heat bonded to one or both sides of the geonet. The geocomposite will maintain less than 30 centimeters leachate head above the bottom liner system. Calculations demonstrating the required material properties for the geocomposite are presented in the Attachment 12, Appendix 12B.

A 2-foot thick protective soil cover will be placed over the geocomposite prior to waste placement. Chimney drains, comprised of aggregate wrapped in a non-woven geotextile, will be constructed over the leachate collection piping for both leachate drainage and pipe stability. The bottom liner system of each sector will slope to drain at a minimum 2 percent grade toward a perforated leachate collection pipe located in the center of each sector. The leachate collection piping will be sloped at a minimum 1 percent to drain leachate into leachate collection sumps located at the perimeter of the landfill. Additional discussion and calculations regarding pipe stability to prevent collapse, spacing and size for anticipated leachate flows, and perforations to prevent clogging are presented in Attachment 15, Appendix 12B.

Leachate collected in the sumps will be removed via submersible pumps lowered into the sumps through a riser extending up the sector sideslope. Additional description of the sumps, including sump sizing calculations, is also presented in Attachment 12, Appendix 12B.

\subsection*{2.3 FINAL COVER SYSTEM}

As shown on Drawing 6C.2, the final cover system will be a soil-geomembrane composite meeting the requirements of \(\S 330.457(a)\). Beginning from the surface and working down, the final cover system will be comprised of the following components:
- Vegetation (native and/or introduced grasses);
- 24-inch-thick vegetative erosion layer, with the upper 6 inches capable of sustaining vegetation;
- Double-sided geocomposite (sideslopes only);
- 60-mil HDPE geomembrane, or 40-mil linear low density polyethylene (LLDPE) geomembrane (smooth on the topslope and textured [both sides] on the sideslopes);
- 18-inch-thick clayey soil infiltration layer \(\left(\mathrm{k} \leq 1 \mathrm{x} 10^{-5} \mathrm{~cm} / \mathrm{sec}\right)\); and
- 6-inch-thick daily cover or 12-inch-thick intermediate cover.

Procedures for installation of the final cover system and closure of the landfill are described in Attachment 9 - Final Closure and Post-Closure Care Plan.

\section*{DRAWINGS}
- Drawing 6C. 1 Bottom Liner Details
- Drawing 6C. 2 Final Cover Details

```


[^0]: Note: TRM = Turf Reinforcing Mat, a permanent reinforcing mat placed below vegetation layer to increase resistance to erosion.

